Защита расстоянием от ионизирующего излучения ии основана. Защита от ионизирующих излучений (радиации)

Вредное воздействие ионизирующих излучений на организм человека, воз­можное при рентгеновском или гамма-контроле качества сварных швов, при работе электронно-лучевых установок, а также при использовании торированных воль­фрамовых электродов, зависит от вида и интенсивности излучения, расстояния от его источника, времени воздействия и индивидуальных особенностей организма.

Энергия излучения, поглощенная единицей массы облучаемого вещества, на­зывается поглощенной дозой излучения Дпогл- Внесистемной единицей поглощен­ной дозы излучения служит рад (1 рад = 10-2 Дж/кг).

В связи с тем, что одинаковая поглощенная доза различных видов излучения вызывает в живой ткани различное биологическое действие, для оценки радиа­ционной опасности хронического облучения излучениями различных видов введе­ны понятия коэффициента качества (КК) и эквивалентной дозы Дьш. Последняя характеризует биологическое воздействие облучения с учетом как поглощенной энергии, так и характера излучения:

Дэкв ~Дпогл ■ КК ’ КР <

где КК - коэффициент качества, показывающий отношение биологической эффек­тивности данного вида излучения и рентгеновых лучей с энергией 250 кэВ нри одинаковой поглощенной дозе; КР - коэффициент распределения дозы, учиты­вающий влияние неоднородности распределения радиоактивных изотопов на их канцерогенную эффективность по отношению к радию-226.

Единицей измерения эквивалентной дозы служит биологический эквивалент рада - бэр. За 1 бэр принимается такая поглощенная доза любого вида излучения, которая при хроническом облучении вызывает такой же биологический эффект, что и 1 рад рентгеновского или гамма-излучения. Дозы, создаваемые различными видами излучения, выраженные одинаковым числом единиц бэр, при одинаковых условиях облучения будут эквивалентны по биологическому действию.

Действующими нормами установлены предельно допустимые дозы (ПДД) облучения людей. В качестве ПДД принят годовой уровень облучения персонала не вызывающий при равномерном накоплении дозы в течение 50 лет обнаруживав* мых современными методами неблагоприятных изменений в состоянии здоровья самого облучаемого и его потомства.

В соответствии с возможными последствиями воздействия ионизирующих излу­чений на организм установлены следующие категории облучаемых лиц: А - пер­сонал; Б - отдельные лица из населения; В - население в целом. ПДД внешнего и внутреннего облучения установлены для четырех групп критических органов и тканей.

Предельно допустимая доза (бэр) для лиц категории А в группе I (все тело) за ряд лет должна быть не более

где N - возраст в годах.

Во всех случаях доза, накопленная в возрасте 30 лет, не должна превышать 60 бэр.

Отдельные лица из персонала, за исключением женщин в возрасте до 30 лет, могут получить однократно в течение одного квартала дозу для всего организма, не превышающую 3 бэр. Для женщин в возрасте до 30 лет однократная доза в тече­ние одного квартала не должна превышать 1,3 бэр.

Для обеспечения безопасности работ необходимо строго соблюдать «Основные санитарные правила работы с радиоактивными веществами и другими источниками ионизирующих излучений» ОСП-72 .

Задача защиты от ионизирующих излучений, в конечном счете, сводится к уменьшению поглощенной дозы. Этого можно добиться удалением облучаемого персонала на безопасное расстояние от источника излучения или сокращением времени облучения.

При точечном источнике излучения экспозиционная доза (в рентгенах) на

рабочем месте, п….

Даксп~ ^2 = £>2 >

где a - активность источника, мКи; Ку - гамма-постоянная изотопа; М - гамма — эквивалент препарата, мг-экв Ra t - время облучения, ч; R - расстояние, см.

В тех случаях, когда «защиту расстоянием» или «защиту временем» обеспечить невозможно, прибегают к сооружению экранов или других ограждений из различ­ных материалов. Передвижные экраны для защиты от рентгеновского или гамма — излучения часто делают из свинца; при создании стационарной защиты удобно ис­пользовать бетон с добавлением в него барита или применением баритовой шту­катурки. Расчет толщины экранов и ограждений в зависимости от энергии излу­чения обычно производят по специальным таблицам или номограммам .

С целью проверки соблюдения норм радиационной безопасности и получения информации о дозе облучения персонала согласно действующим правилам должен быть организован радиационный контроль с использованием стационарных и переносных приборов, а также индивидуальных дозиметров.

Электронно-лучевые установки, работающие при напряжении от 10 до 100 кВ, относятся к группе источников рентгеновского излучения, не используемого для технологических целей.

Толщину защиты электронной пушки элекгронно-лучевых установок с фоку­сирующей и отклоняющей системами плавильной и сварочной камер рассчиты­вают в соответствии с рабочим напряжением установки и максимальной силой тока. Смотровые окна должны быть снабжены свинцовыми стеклами с толщиной, эквивалентной защите камеры, а для плавильных установок оборудованы периско­пическими устройствами.

Установки, предназначенные для сварки должны размещаться в отдельных помещениях на первом этаже. Подвальные помещения, над которыми размещены электронно-лучевые установки, использовать под служебные помещения с местами постоянного пребывания людей запрещается.

Расположение электронно-лучевых установок в отведенных для них помеще­ниях должно удовлетворять следующим основным требованиям:

а) свободная площадь, не занятая электронно-лучевыми установками, долж­на составлять не менее половины общей площади помещений;

б) расстояние от верха установок до потолка должно быть не менее 1 м;

в) пульт управления должен размещаться на расстоянии не более 1,5 м от установки; на сварочных установках допустимо иметь дублирующее управление на камере.

Дозиметрический контроль защиты должен проводиться не реже 1 раза в год, а также после монтажа или внесения изменений в конструкцию действующих уста­новок и выполняться ответственным лицом, выделенным администрацией пред­приятия .

Использование тарированных вольфрамовых электродов при сварке в среде защитных газов потенциально может быть связано с выделением в воздух произ­водственных помещений тория и продуктов его распада.

Порядок получения тарированных вольфрамовых электродов и перевозка их всеми видами транспорта регламентируется действующими санитарными пра­вилами ОСП-72 и правилами безопасной перевозки радиоактивных веществ. Большинство видов работ с тарированными вольфрамовыми электродами (из сплавов марок ВТ10, ВТ15 и др.) радиационной опасности не представляет. Условная радиационная опасность может возникать при транспортировке и хра­нении электродов общей массой более 5 кг, а также при заточке вольфрамовых электродов и при одновременной сварке более чем на пяти рабочих постах, рас­положенных в одном цехе. Однако условно опасная работа перестает быть радиа — циоино опасной при соблюдении санитарных правил и требований техники безо­пасности. На предприятиях и в учреждениях, использующих тарированные воль­фрамовые электроды, запас электродов не должен превышать годовой потребности в них. Этот запас следует хранить на центральном складе предприятия.

Электроды, необходимые для месячной работы, и квартальные запасы, если их общая масса не превышает 5 кг, разрешается хранить в подсобных складах цехов или участков, не отделяя их от остальных хранящихся материалов, за исклю­чением фоточувствительных. К хранению тарированных вольфрамовых электро­дов непосредственно на рабочих местах (до 1 кг) особых требований не предъяв­ляется. Операции по заточке тарированных вольфрамовых электродов следует производить на специально выделенном заточном станке, установленном в любом близлежащем к сварочным постам помещении, отвечающем санитарным и гигиени­ческим требованиям. Заточной станок должен быть оборудован механической вытяжкой. Пыль должна собираться и помещаться в сборник твердых радиоактив­ных отходов. Лица, производящие заточку электродов, дсяжны дополнительно обеспечиваться рукавицами. Сварку тарированными вольфрамовыми электродами (одновременно более чем на пяти рабочих постах в одном и том же помещении), а также заточку электродов и уборку пьт»іи от заточного станка следует произво­дить в респираторе. Дозиметрический контроль при работе с тарированными воль­фрамовыми электродами должен выполняться промышленными лабораториями предприятий и радиологическими группами санитарно-эпидемиологических стан­ций (СЭС) в виде текущего санитарного надзора.

В связи с тем, что проникающее излучение оказывает вредное биологическое действие, первостепенное значение при работе с радиоактивными веществами приобретает правильная организация труда , обеспечивающая безопасность обслуживающего персонала. Правильно организовать работу с радиоактивными веществами значит создать условия, исключающие превышение пределов доз облучения и предупреждение проникновения радиоактивных веществ внутрь организма. Сюда входит целый комплекс мероприятий, обеспечивающих защиту от внешнего облучения, а также позволяющих предотвратить загрязненность радиоактивными источниками рабочих помещений, рук и тела работающих, осуществить контроль за уровнем радиоактивных излучений.

Условия безопасности при использовании радиоактивных изотопов требуют соблюдения мер защиты не только в отношении людей, непосредственно работающих с радиоактивными веществами или находящихся в смежных помещениях, но также и населения, проживающего недалеко от предприятия, которое может подвергаться радиоактивному облучению. Безопасность работающих с источниками ионизирующих излучений обеспечивается установлением предельно допустимых доз облучения, применением защиты временем и расстоянием, использованием технических и индивидуальных средств защиты.

Нормирование параметров и организационные меры защиты . Нормы радиационной безопасности установлены в СанПиН 2.6.1.2523-09 "Нормы радиационной безопасности (НРБ-99/2009)" . Нормы применяются для обеспечения безопасности человека во всех условиях воздействия на него ионизирующего излучения искусственного или природного происхождения. НРБ-99/2009 устанавливают следующие категории облучаемых лиц :

  • – персонал (группы А и Б);
  • – все население, включая лиц из персонала вне сферы и условий их производственной деятельности.

Группу А составляют лица, работающие с техногенными источниками излучения. В группу Б входят лица, работающие на радиационном объекте или на территории его санитарно-защитной зоны и находящиеся в сфере воздействия техногенных источников. Основные пределы доз и все остальные допустимые производные уровни для персонала группы Б не должны превышать одной четвертой значений для персонала группы А.

  • 1) основные пределы доз (ПД), которые приведены в табл. 5.4;
  • 2) допустимые уровни монофакторного воздействия (для одного радионуклида, пути поступления или одного вида внешнего облучения), являющиеся производными от основных пределов доз, – пределы годового поступления (ПГП), допустимые среднегодовые объемные активности (ДОА), среднегодовые удельные активности (ДУА) и др.

Для обеспечения условий, при которых радиационное воздействие будет ниже допустимого, с учетом достигнутого в организации уровня радиационной безопасности администрацией организации дополнительно устанавливаются контрольные уровни (дозы, уровни активности, плотности потоков и др.).

Основные пределы доз облучения не включают в себя дозы от природного и медицинского облучения, а также дозы вследствие радиационных аварий. На эти виды облучения устанавливаются специальные ограничения.

Эффективная доза для персонала не должна превышать за период трудовой деятельности (50 лет) – 1000 мЗв, для населения за период жизни (70 лет) – 70 мЗв. Началом периодов считается 1 января 2000 г. 1

Годовая эффективная доза облучения персонала за счет нормальной эксплуатации техногенных источников ионизирующего излучения не должна превышать пределов доз, установленных в табл. 5.4. Под годовой эффективной дозой понимается сумма эффективной дозы внешнего облучения, полученной за календарный год, и ожидаемой эффективной дозы внутреннего облучения, обусловленной поступлением в организм радионуклидов за этот же год.

Таблица 5.4

Основные пределы доз

При организации работ с источниками малой мощности распространенными способами являются защита временем и защита расстоянием. Защита временем предусматривает такой регламент работ, при котором доза, полученная за время проведения работ, не превысит предельно допустимую. Защита расстоянием означает, что все операции с источниками излучения следует проводить при помощи манипуляторов, а весь процесс работы – в возможно короткий срок, в течение которого доза, полученная работающим, будет наименьшей и не превысит пределов, установленных санитарными нормами и правилами.

При работе с источниками большой активности для защиты работающих необходимы специальные экраны , в десятки и сотни раз ослабляющие интенсивность излучения. Например, для защитных экранов, поглощающих гамма- излучение , используются материалы, содержащие элементы с высоким атомным номером и высокой плотностью (например, свинец); пригодны по своим защитным свойствам также вода, сталь, чугун, бетон, баритобетон. Определение необходимой толщины экрана может быть произведено расчетным путем по справочным данным и по номограммам, приведенным в специальной литературе.

Защита от нейтронов. Обладая огромной проникающей способностью, быстрые нейтроны слабо поглощаются веществом, поэтому задача защиты от нейтронов заключается в замедлении движения быстрых нейтронов с последующим поглощением замедленных нейтронов. Известно, что быстрый нейтрон теряет приблизительно две трети своей энергии при столкновении с атомом водорода, вследствие этого хорошим защитным материалом от нейтронов являются вода и водородосодержащие материалы (парафин). Большое сечение захвата медленных нейтронов имеет бериллий. Нейтроны малой энергии (тепловые) хорошо поглощаются бором и кадмием, поэтому бор в чистом виде или в виде соединений вводится в бетон, свинец и другие материалы, применяемые для защиты от нейтронов и гамма-излучения, которое сопровождает поглощение нейтронов такими материалами, как бериллий, бор и кадмий.

Технические меры защиты. К техническим мерам защиты от ионизирующих излучений относятся автоматизация и дистанционное управление, герметизация источников, защитное экранирование. При выборе технических средств защиты необходимо учитывать условия облучения (внешнее или внутреннее). При работе с радиоактивными веществами в открытом виде наряду с опасностью внешнего облучения имеется возможность поступления этих веществ внутрь организма. Для защиты персонала используется радиационно-защитное технологическое оборудование (камеры, боксы, вытяжные шкафы), а также сейфы, контейнеры и мешки для радиоактивных отходов. Герметичность вытяжных устройств – шкафов, боксов и камер обеспечивается созданием разрежения воздуха (100–200 Па).

Радиохимический шкаф более герметичен, чем обычный химический, рабочие отверстия закрыты перчатками, скорость воздуха в открывающихся проемах (в зависимости от класса работ) составляет 1–1,5 м/с. Боксы – герметичные укрытия, применяемые для проведения операций с радиоизотопами в открытом виде. Для проведения операций в заданных газовых средах (например, восстановления металлов в инертных средах) применяют боксы с замкнутой циркуляцией воздуха . Такие боксы имеют собственную вентиляционную систему, обеспечивающую очистку в индивидуальном фильтре бокса загрязненного радиоактивными аэрозолями воздуха (или другого газа) и подачу очищенного воздуха в бокс. В вытяжных шкафах и боксах используют манипуляторы копирующие, шпатовые и другой дистанционный инструмент, приспособления для вскрытия пеналов, запайки ампул и др. Кроме того, манипуляторные боксы снабжены контейнерами для твердых отходов, тележками для подачи контейнеров, блоком сварки пластиковых мешков. Для вакуумной плавки и литья радиоактивных металлов применяют дистанционно управляемую установку, которая размещается в герметичном боксе, оборудованном автоматическими транспортными коммуникациями.

Для работ с веществами высоких уровней активности используют камеры , полностью герметизированные, с дистанционным управлением рабочими операциями и наблюдением через защищенные отверстия. Работы с веществами большой активности выполняются на полностью автоматизированном оборудовании с дистанционным управлением.

Защита от внешнего облучения предусматривает создание таких ограждений (экранов) , которые снижали бы дозу внешнего облучения до предельно допустимой. Выбор типа ограждения или экрана прежде всего зависит от вида излучения, а также от активности и энергии источника излучения, условий его эксплуатации. Стационарными ограждениями служат защитные стены, перекрытия пола и потолка, смотровые окна; экранами – стенки контейнеров для перевозки радиоактивных изотопов, сейфов для их хранения, боксов и др.

При выборе материала экрана (ограждения) во внимание принимаются спектральный состав излучения, его интенсивность, а также расстояние от источника, на котором находится обслуживающий персонал, и время пребывания под действием излучений. Например, для защиты от альфа-излучения достаточен слой воздуха в 10 см от источника, так как пробег альфа-частиц в воздухе не превышает 8–9 см. Применяют также экраны из плексигласа или стекла толщиной в несколько миллиметров. Практически при работе с альфа-активными препаратами приходится защищаться не только от альфа-, но и от бета- или гамма- излучения.

Экраны для защиты от бета-излучения изготовляют из материалов с малой атомной массой (например, алюминия) или из плексигласа. Толщину экрана определяют с учетом максимального пробега бета-частиц (для алюминия при энергии бета-частиц Е = 0,1:0,6 МэВ пробег l = 0,07:1 мм). Но при прохождении бета-частиц через вещество не только ионизируются атомы, но и возникает тормозное излучение, поэтому для защиты от бета-излучений высоких энергий экран снаружи покрывают слоем тяжелого материала (например, свинца) для поглощения тормозного излучения. Возникающие в материале внутреннего слоя экрана кванты с малой энергией поглощаются внешним слоем материала с большой атомной массой. Толщину наружного слоя определяют по рассчитанному значению энергии тормозного излучения и создаваемой им дозе излучения.

Сложнее осуществить защиту от внешнего гамма- излучения , проникающая способность которого гораздо выше, чем у альфа- и бета-частиц. Обеспечить полную защиту от гамма-излучения не представляется возможным. Защитные устройства позволяют только снизить величину дозы этого излучения в любое число раз. Материалы защитных устройств – вещества с большой атомной массой и высокой плотностью: свинец, вольфрам и т.п. Часто используют более легкие материалы, но менее дефицитные и более дешевые: сталь, чугун, сплавы меди. Стационарные ограждения, являющиеся частью строительных конструкций, целесообразнее изготовлять из бетона и баритобетона. Смотровые системы изготовляют из специального стекла: свинцового с жидким наполнителем (бромидом и хлоридом цинка) и др. В качестве защищающего от гамма-лучей материала применяют и свинцовую резину.

Защиту от гамма-излучения можно осуществить также временем, расстоянием, количеством радиоактивного вещества. Для обеспечения условий безопасности доза облучения не должна превышать ПДД (5 бэр в год).

Сложность создания защиты от нейтронного излучения состоит в том, что нейтроны вследствие отсутствия заряда не взаимодействуют с электрическим полем и поэтому распространяются в веществе, пока не столкнутся с ядрами. Таким образом, поглощение веществом нейтронного излучения проходит в два этапа: вначале быстрые нейтроны в результате упругих столкновений с ядрами рассеиваются, энергия нейтронов уменьшается до тепловой, а затем тепловые нейтроны при неупругих взаимодействиях поглощаются средой. Максимальное рассеивание происходит при упругих столкновениях частиц равной массы – для нейтронов это ядра водорода.

Для защиты от нейтронного излучения применяют воду, парафин, а также графит, бериллий и др. Нейтроны малой энергии поглощаются бором и кадмием, поэтому в применяемый для защиты от нейтронов бетон добавляют соединения бора: буру, колеманит. При поглощении нейтронов происходит испускание гамма-квантов. Для комбинированной защиты от нейтронов и гамма-излучения используют смеси тяжелых материалов с водой или водородсодержащими материалами, а также комбинации слоев тяжелых и легких материалов: железо – вода, свинец – вода, свинец – полиэтилен и т.п. Толщина экрана определяется по таблицам, номограммам или расчетам.

Средства индивидуальной защиты предназначены для защиты от внутреннего облучения радиоактивными веществами, а также – при внешнем облучении – от альфа- и мягкого бета-излучений (от гамма- и нейтронного излучений они не защищают). Индивидуальные средства защиты включают спецодежду, средства защиты органов дыхания и зрения.

При работах I класса и отдельных работах II класса работники обеспечиваются комбинезонами или костюмами, шапочками, легкой пленочной обувью или специальными ботинками, перчатками, бумажными полотенцами или носовыми платками разового пользования, а также средствами защиты органов дыхания. При работах II и III классов работники снабжаются халатами, шапочками, легкой обувью, перчатками, а при необходимости – средствами защиты органов дыхания.

Для выполнения ремонтных работ, при которых загрязнения могут быть очень большими, разработаны пневмо-костюмы из пластических материалов с принудительной подачей воздуха под костюм. Пневмокостюм защищает основную спецодежду, органы дыхания и кожные покровы от радиоактивной пыли. Вследствие полной герметичности костюм можно дезактивировать на работающем после его выхода из загрязненной зоны.

Органы дыхания при работе с изотопами защищают посредством респираторов, пневмошлемов, противогазов. Наиболее надежен шланговый противогаз.

Для защиты глаз применяют очки закрытого типа со стеклами, содержащими свинец или фосфат вольфрама. При работах с источниками альфа- и бета-излучений для защиты лица и глаз используют защитные щитки из оргстекла.

Безопасность работы с радиоактивными веществами и источниками излучения можно обеспечить, организуя систематический дозиметрический контроль за уровнями внешнего и внутреннего облучения персонала, а также за уровнем радиации в окружающей среде (воздухе, воде и др.). Объем дозиметрического контроля зависит от характера работы с радиоактивными веществами. При работе с закрытыми источниками достаточно измерять дозы гамма-излучения на рабочих местах постоянного и временного пребывания персонала.

Осуществление работ с открытыми источниками требует кроме измерения уровней потоков излучения проведения контроля уровней загрязненности воздуха и рабочих поверхностей радиоактивными веществами, а также контроля уровней загрязненности рук и одежды работающих. Персонал, контактирующий с радиоактивными веществами, должен иметь индивидуальные дозиметры для контроля гамма-излучения.

  • Утверждены постановлением Главного государственного санитарного врача РФ от 7 июля 2009 г. № 47.

Ионизирующее излучение – это любые излучения, взаимодействие которых со средой приводит к образованию электрических зарядов разных знаков, т.е. ионизации атомов и молекул в облучаемом веществе. Все ионизирующие излучения по своей природе делятся на фотонные (квантовые) и корпускулярные.

К фотонному (квантовому) ионизирующему излучению относятся:

· гамма-излучение, возникающее при изменении энергетического состояния атомных ядер или аннигиляции частиц

· тормозное излучение, возникающее при уменьшении кинетической энергии заряженных частиц

· характеристическое излучение с дискретным энергетическим спектром, возникающее при изменении энергетического состояния электронов атома

· рентгеновское излучение, состоящее из тормозного и/или характеристического излучений.

Корпускулярное излучение – это ионизирующее излучение, состоящее из частиц с массой покоя, отличной от нуля. Выделяют две их разновидности:

заряженные частицы: бета-частицы (электроны), протоны (ядра водорода), дейтроны (ядра тяжелого водорода - дейтерия), альфа-частицы (ядра гелия);

тяжелые ионы – ядра других элементов, ускоренные до больших энергий. При прохождении через вещество заряженная частица, теряя свою энергию, вызывает ионизацию и возбуждение атома. К незаряженным частицам относятся нейтроны, которые не взаимодействуют с электронной оболочкой атома, беспрепятственно проникают вглубь атома, вступая в реакцию с ядрами. При этом испускают альфа-частицы или протоны. Протоны приобретают в среднем половину кинетической энергии нейтронов и вызывают на своем пути ионизацию. Плотность ионизации протонов велика. В веществах, содержащих много атомов водорода (вода, парафин, графит), нейтроны быстро растрачивают свою энергию и замедляются, что используется в целях радиационной защиты. Нейтронное и гамма излучение принято называть проникающей радиацией или проникающим излучением.

Различают два вида радиоактивности: естественную (природную) и искусственную. Наиболее реальную опасность представляют искусственные источники излучений. Совершенствование авиакосмической техники может привести к использованию в будущем бортовых радиоизотопных, ядерно-энергетических и ядерно-силовых установок, являющихся источниками ионизирующих излучений. Возникновение радиационной ситуации возможно при перевозках радионуклидов, а также при взрыве ядерного оружия, аварийном выбросе технологических продуктов атомного предприятия в окружающую среду и местном выпадении радиоактивных веществ.

Ионизирующие излучения по своему энергетическому составу делятся на моноэнергетические (монохроматические) и немоноэнергетические (немонохроматические). Моноэнергетическое (однородное) излучение - это излучение, состоящее из частиц одного вида с одинаковой кинетической энергией или из квантов одинаковой энергии. Немоноэнергетическое (неоднородное) излучение - это излучение, состоящее из частиц одного вида с разной кинетической энергией или из квантов различной энергии. Ионизирующее излучение, состоящее из частиц различного вида или частиц и квантов, называется смешанным излучением.



Источники ионизирующих излучений

Источником ионизирующего излучения называют объект, содержащий радиоактивный материал, или техническое устройство, испускающее или способное (при определенных условиях) испускать ионизирующее излучение.

Современные ядерно-технические установки обычно представляют собой сложные источники излучений. Например, источниками излучений действующего ядерного реактора, кроме активной зоны, являются система охлаждения, конструкционные материалы, оборудование и др. Поле излучения таких реальных сложных источников обычно представляется как суперпозиция полей излучения отдельных, более элементарных источников.

Любой источник излучения характеризуется:

1. Видом излучения - основное внимание уделяется наиболее часто встречающимся на практике источникам излучения.

2. Геометрией источника (формой и размерами) - геометрически источники могут быть точечными и протяженными. Протяженные источники представляют суперпозицию точечных источников и могут быть линейными, поверхностными или объемными с ограниченными, полубесконечными или бесконечными размерами. Физически точечным можно считать такой источник, максимальные размеры которого много меньше расстояния до точки детектирования и длины свободного пробега в материале источника (ослаблением излучения в источнике можно пренебречь). Поверхностные источники имеют толщину много меньшую, чем расстояние до точки детектирования и длина свободного пробега в материале источника. В объемном источнике излучатели распределены в трехмерной области пространства.

3. Мощностью и ее распределением по источнику - источники излучения наиболее часто распределяются по протяженному излучателю равномерно, экспоненциально, линейно или по косинусоидальному закону.

4. Энергетическим составом - энергетический спектр источников может быть моноэнергетическим (испускаются частицы одной фиксированной энергии), дискретным (испускаются моноэнергетические частицы нескольких энергий) или непрерывным (испускаются частицы разных энергий в пределах некоторого энергетического диапазона).

5. Угловым распределением излучения - среди многообразия угловых распределений излучений источников для решения большинства практических задач достаточно рассматривать следующие: изотропное, косинусоидальное, мононаправленное. Иногда встречаются угловые распределения, которые можно записать в виде комбинаций изотропных и косинусоидальных угловых распределений излучений.

Источниками ионизирующих излучений являются радиоактивных элементы и их изотопы, ядерные реакторы, ускорители заряженными частиц и др. рентгеновские установки и высоковольтные источники постоянного тока относятся к источникам рентгеновского излучения.

Здесь следует отметить, что при нормальном режиме их эксплуатации радиационная опасность незначительна. Она наступает при возникновении аварийного режима и может долго проявлять себя при радиоактивном заражении местности.

Радиоактивный фон, создаваемый космическими лучами (0,3 мЗв/год), дает чуть меньше половины всего внешнего облучения (0,65 мЗв/год), получаемого населением. Нет такого места на Земле, куда бы ни проникали космические лучи. При этом надо отметить, что Северный и Южный полюса получают больше радиации, чем экваториальные районы. Происходит это из-за наличия у Земли магнитного поля, силовые линии которого входят и выходят у полюсов.

Однако более существенную роль играет место нахождения человека. Чем выше поднимается он над уровнем моря, тем сильнее становится облучение, ибо толщина воздушной прослойки и ее плотность по мере подъема уменьшается, следовательно, падают защитные свойства.

Те, кто живет на уровне моря, в год получают дозу внешнего облучения приблизительно 0,3 мЗв, на высоте 4000 метров - уже 1,7 мЗв. На высоте 12 км доза облучения за счет космических лучей возрастает приблизительно в 25 раз по сравнению с земной. Экипажи и пассажиры самолетов при перелете на расстояние 2400 км получают дозу облучения 10 мкЗв (0,01 мЗв или 1 мбэр), при полете из Москвы в Хабаровск эта цифра уже составит 40 - 50 мкЗв. Здесь играет роль не только продолжительность, но и высота полета.

Земная радиация, дающая ориентировочно 0,35 мЗв/год внешнего облучения, исходит в основном от тех пород полезных ископаемых, которые содержат калий - 40, рубидий - 87, уран - 238, торий - 232. Естественно, уровни земной радиации на нашей планете неодинаковы и колеблются большей частью от 0,3 до 0,6 мЗв/год. Есть такие места, где эти показатели во много раз выше.

Внутренне облучение населения от естественных источников на две трети происходит от попадания радиоактивных веществ в организм с пищей, водой и воздухом. В среднем человек получает около 180 мкЗв/год за счет калия - 40, который усваивается организмом вместе с нерадиоактивным калием, необходимым для жизнедеятельности. Нуклиды свинца - 210, полония - 210 концентрируются в рыбе и моллюсках. Поэтому люди, потребляющие много рыбы и других даров моря, получают относительно высокие дозы внутреннего облучения.

Жители северных районов, питающиеся мясом оленя, тоже подвергаются более высокому облучению, потому что лишайник, который употребляют олени в пищу зимой, концентрирует в себе значительные количества радиоактивных изотопов полония и свинца.

Недавно ученые установили, что наиболее весомым из всех естественных источников радиации является радиоактивный газ радон - это невидимый, не имеющий ни вкуса, ни запаха газ, который в 7,5 раз тяжелее воздуха. В природе радон встречается в двух основных видах: радон - 222 и радон - 220. Основная часть радиации исходит не от самого радона, а от дочерних продуктов распада, поэтому значительную часть дозы облучения человек получает от радионуклидов радона, попадающих в организм вместе с вдыхаемым воздухом.

Радон высвобождается из земной коры повсеместно, поэтому максимальную часть облучения от него человек получает, находясь в закрытом, непроветриваемом помещении нижних этажей зданий, куда газ просачивается через фундамент и пол. Концентрация его в закрытых помещениях обычно в 8 раз выше, чем на улице, а на верхних этажах ниже, чем на первом. Дерево, кирпич, бетон выделяют небольшое количество газа, а вот гранит и железо - значительно больше. Очень радиоактивны глиноземы. Относительно высокой радиоактивностью обладают некоторые отходы промышленности, используемые в строительстве, например, кирпич из красной глины (отходы производства алюминия), доменный шлак (в черной металлургии), зольная пыль (образуется при сжигании угля).

Приборы радиационной разведки

За последние 30 лет в связи с бурным развитием электроники созданы новые современные приборы для регистрации всех видов ионизирующего излучения, что оказало существенное влияние на качество и достоверность измерений. Повысилась надежность средств измерения, значительно снизились энергопотребление, габариты, масса приборов, повысилось разнообразие, и расширилась сфера их применения.

Приборы для регистрации ионизирующего излучения предназначены для измерения величин, характеризующих источники и поля ионизирующих излучений, взаимодействие ионизирующих излучений с веществом.

Приборы и установки, используемые для регистрации ионизирующих излучений, подразделяются на следующие основные группы:

1. Дозиметры – приборы для измерения дозы ионизирующего излучения (экспозиционной, поглощенной, эквивалентной) , а также коэффициента качества.

2. Радиометры – приборы для измерения плотности потока ионизирующего излучения.

3. Универсальные приборы – устройства, совмещающие функции дозиметра и радиометра, радиометра и спектрометра и пр.

4. Спектрометры ионизирующих излучений – приборы, измеряющие распределение (спектр) величин, характеризующих поле ионизирующих излучений.

В соответствии с проверочной схемой по методологическому назначению приборы и установки для регистрации ионизирующих излучений подразделяются на образцовые и рабочие. Образцовые приборы и установки предназначены для поверки по ним других средств измерений, как рабочих, так и образцовых, менее высокой точности. Заметим, что образцовые приборы запрещается использовать в качестве рабочих. Рабочие приборы и установки – средства для регистрации и исследования ионизирующих излучений в экспериментальной и прикладной ядерной физике и многих других областях народного хозяйства. Приборы для регистрации ионизирующего излучения разделяются также по виду измеряемого излучения, по эффекту взаимодействия излучения с веществом (ионизационные, сцинтилляционные, фотографические и т.д.) и другим признакам. По оформлению приборы для регистрации ионизирующего излучения подразделяют на стационарные, переносные и носимые, а также на приборы с автономным питанием, питанием от электрической сети и не требующие затрат энергии.

Влияние ионизирующего излучения на организм человека

Всем известно, что все ткани организма способны поглощать энергию излучения, которая преобразуется в энергию химических реакций и тепло. В тканях содержится 60-80% воды. Следовательно, большая часть энергии излучения поглощается водой, а меньшая - растворенными в ней веществами. Поэтому при облучении в организме появляются свободные радикалы – продукты разложения (радиолиза) воды, которые в химическом отношении очень активны, могут вступать в реакцию с белками и другими молекулами.

При воздействии очень больших доз в результате первичного действия ионизирующего излучения наблюдаются изменения в любых биомолекулах.

При умеренных же дозах лучевого воздействия первично страдают в основном только высокомолекулярные органические соединения: нуклеиновые кислоты, белки, липопротеиды и полимерные соединения углеводов. Нуклеиновые кислоты обладают чрезвычайно высокой радиочувствительностью. При прямом попадании достаточно 1 -3 актов ионизации, чтобы молекулы ДНК вследствие разрыва водородных связей распалась на две части и утратила свою биологическую активность. При воздействии ионизирующего излучения в белках происходят структурные изменения, приводящие к потере ферментативной и иммунной активности.

В результате этих процессов, протекающих практически моментально, образуются новые химические соединения (радиотоксины), несвойственные организму в норме. Все это приводит к нарушению сложных биохимических процессов обмена веществ и жизнедеятельности клеток и тканей, т.е. к развитию лучевой болезни.

Острая лучевая болезнь (ОЛБ) возникает при воздействии на человека больших доз излучения за короткий промежуток времени и имеет три стадии:

1-ая стадия (доза облучения 1-2 Зв (зиверт), скрытый период 2-3 недели) сопровождается симптомами: общая слабость, утомляемость, апатия, головокружение, головная боль, нарушение сна. Исключение облучения и соответствующее лечение позволяют полностью восстановить здоровье.

2-ая стадия (доза облучения 2-3 Зв (зиверт), скрытый период 1 неделя) характеризуется усилением болезненных ощущений, появлением сильных болей в области сердца, живота, кровотечение из носа. Срок лечения 2 месяца.

3-ая стадия (доза облучения 3-5 Зв), характеризуется необратимыми последствиями в организме через 3-7 часов и даже летальным исходом.

Доза более 5 Зв является смертельной.

Способы и средства обеспечения радиационной безопасности

При попадании радиоактивных веществ на открытые участки тела, одежду, снаряжение основная задача сводится к быстрому их удалению, чтобы воспрепятствовать попаданию радионуклидов в организм. Если радиоактивное вещество все же проникло внутрь, то пострадавшему сразу вводят адсорбенты в желудок, промывают его, дают рвотные, слабительные, отхаркивающие средства, способные прочно связать радиоактивные вещества и препятствовать отложению их в тканях.

Профилактика радиационных поражений осуществляется путем проведения комплекса санитарно-гигиенических, санитарно-технических и специальных медицинских мероприятий.

Средства противохимической защиты (защитная одежда, противогазы или респираторы и т. п.) оказывают известный защитный эффект от воздействия радиоактивных веществ. В случае, когда неизбежно облучение в дозах, превышающих ПДД, профилактика осуществляется методом фармакохимической защиты.

В результате многочисленных радиобиологических исследований обнаружены вещества, которые при введении в организм за определенное время до облучения снижают в той или иной степени радиационное поражение. Такие вещества называются радиозащитными, или радиопротекторами. Большинство изученных в настоящее время радиопротекторов оказывают положительный эффект при введении их в организм за сравнительно короткое время до облучения. Они улучшают течение лучевой болезни, ускоряют восстановительные процессы, повышают эффективность терапии и увеличивают выживаемость.

Кроме радиопротекторов, должное внимание следует уделять биологической защите, которая осуществляется с помощью адаптогенов. Эти вещества не обладают специфическим действием, но зато повышают общую сопротивляемость организма к различным неблагоприятным факторам, в том числе и к ионизирующим излучениям. Адаптогены назначают многократно за несколько дней или недель до облучения. К ним следует отнести препараты элеутерококка, женьшеня, лимонника китайского, витаминно-аминокислотные комплексы, некоторые микроэлементы и др. Механизм действия этих препаратов необычайно широк. В понятие биологической защиты входят и такие мероприятия, как акклиматизация к гипоксии, вакцинация, хорошее питание, занятия спортом и т. д. Все это, безусловно, повышает устойчивость организма.

Различают два вида эффекта воздействия на организм ионизирующих излучений: соматический и генетический.

При соматическом эффекте последствия проявляются непосредственно у облучаемого, при генетическом - у его потомства. Соматические эффекты могут быть ранними или отдалёнными. Ранние возникают в период от нескольких минут до 30-60 суток после облучения. К ним относят покраснение и шелушение кожи, помутнение хрусталика глаза, поражение кроветворной системы, лучевая болезнь, летальный исход. Отдалённые соматические эффекты проявляются через несколько месяцев или лет после облучения в виде стойких изменений кожи, злокачественных новообразований, снижения иммунитета, сокращения продолжительности жизни.

Ионизирующее излучение может оказывать влияние на организм как при внешнем (особенно рентгеновское и гамма-излучение), так и при внутреннем (особенно альфа-частицы) облучении. Внутреннее облучение происходит при попадании внутрь организма через лёгкие, кожу и органы пищеварения источников ионизирующего излучения. Внутреннее облучение более опасно, чем внешнее, так как попавшие внутрь ИИИ подвергают непрерывному облучению ничем не защищённые внутренние органы.

Под действием ионизирующего излучения вода, являющаяся составной частью организма человека, расщепляется и образуются ионы с разными зарядами. Полученные свободные радикалы и окислители взаимодействуют с молекулами органического вещества ткани, окисляя и разрушая её. Нарушается обмен веществ. Происходят изменения в составе крови - снижается уровень эритроцитов, лейкоцитов, тромбоцитов и нейтрофилов. Поражение органов кроветворения разрушает иммунную систему человека и приводит к инфекционным осложнениям.

Местные поражения характеризуются лучевыми ожогами кожи и слизистых оболочек. При сильных ожогах образуются отёки, пузыри, возможно отмирание тканей (некрозы).

Смертельные поглощённые дозы для отдельных частей тела следующие:

голова - 20 Гр;
нижняя часть живота - 50 Гр;
грудная клетка -100 Гр;
конечности - 200 Гр.

Защита от ионизирующих излучений

От альфа-лучей можно защититься путём:

увеличения расстояния до ИИИ, т.к. альфа-частицы имеют небольшой пробег;
использования спецодежды и спецобуви, т.к. проникающая способность альфа-частиц невысока;
исключения попадания источников альфа-частиц с пищей, водой, воздухом и через слизистые оболочки, т.е. применение противогазов, масок, очков и т.п.

В качестве защиты от бета-излучения используют:

Ограждения (экраны), с учётом того, что лист алюминия толщиной несколько миллиметров полностью поглощает поток бета-частиц;
методы и способы, исключающие попадание источников бета-излучения внутрь организма.

Защиту от рентгеновского излучения и гамма-излучения необходимо организовывать с учётом того, что эти виды излучения отличаются большой проникающей способностью. Наиболее эффективны следующие мероприятия (как правило, используемые в комплексе): - увеличение расстояния до источника излучения;
- сокращение времени пребывания в опасной зоне;
- экранирование источника излучения материалами с большой плотностью (свинец, железо, бетон и др.);
- использование защитных сооружений (противорадиационных укрытий, подвалов и т.п.) для населения;
- использование индивидуальных средств защиты органов дыхания, кожных покровов и слизистых оболочек;
- дозиметрический контроль внешней среды и продуктов питания.

При использовании различного рода защитных сооружений следует учитывать, что мощность экспозиционной дозы ионизирующего излучения снижается в соответствии с величиной коэффициента ослабления (Косл).

Некоторые величины Косл приведены в (табл. 3.5).

Для населения страны, в случае объявления радиационной опасности существуют следующие рекомендации.

УКРЫТЬСЯ В ЖИЛЫХ ДОМАХ. Важно знать, что стены деревянного дома ослабляют ионизирующее излучение в 2 раза, а кирпичного - в 10 раз. Погреба и подвалы домов ослабляют дозу излучения от 7 до 100 и более раз.

ПРИНЯТЬ МЕРЫ ЗАЩИТЫ ОТ ПРОНИКНОВЕНИЯ В КВАРТИРУ (ДОМ) РАДИАКТИВНЫХ ВЕЩЕСТВ С ВОЗДУХОМ:

закрыть форточки, уплотнить рамы и дверные проёмы.

СДЕЛАТЬ ЗАПАС ПИТЬЕВОЙ ВОДЫ: набрать воду в закрытые ёмкости, подготовить простейшие средства санитарного назначения (например, мыльные растворы для обработки рук), перекрыть краны.

ПРОВЕСТИ ЭКСТРЕННУЮ ЙОДНУЮ ПРОФИЛАКТИКУ (как можно раньше, но только после специального оповещения!). Йодная профилактика заключается в приёме препаратов стабильного йода: йодистого калия или водно-спиртового раствора йода. При этом достигается 100%-ная степень защиты от накопления радиоактивного йода в щитовидной железе.

Водно-спиртовой раствор йода следует принимать после еды 3 раза в день в течение 7 суток:

Детям до 2 лет - по 1-2 капли 5%-ной настойки на 100 мл молока или питательной смеси;
- детям старше 2 лет и взрослым - по 3-5 капель на стакан молока или воды.

Наносить на поверхность кистей рук настойку йода в виде сетки 1 раз в день в течение 7 суток.

Ионизирующим излучением называют потоки корпускул (элементарных частиц) и потоки фотонов (квантов электромагнитного поля), которые при движении через вещество ионизируют его атомы и молекулы.

Наиболее известны альфа-частицы (представляющие собой ядра гелия и состоящие из двух протонов и двух нейтронов), бета-частицы (представляющие из себя электрон) и гамма-излучение (представляющее кванты электромагнитного поля определенного диапазона частот). Дуализм «частица – волна» квантового мира позволяет говорить об альфа-излучении и бета-излучении. Ионизирующими являются также рентгеновское, тормозное и космическое излучения, потоки протонов, нейтронов и позитронов.

Природное ионизирующее излучение присутствует повсюду. Оно поступает из космоса в виде космических лучей. Оно есть в воздухе в виде излучений радиоактивного радона и его вторичных частиц. Радиоактивные изотопы естественного происхождения проникают с пищей и водой во все живые организмы и остаются в них. Ионизирующего излучения невозможно избежать. Естественный радиоактивный фон существовал на Земле всегда, и жизнь зародилась в поле его излучений, а затем – много-много позже – появился и человек. Эта природная (естественная) радиация сопровождает нас в течение всей жизни.

Физическое явление радиоактивности было открыто в 1896 г., и сегодня оно широко применяется во многих областях. Несмотря на радиофобию, атомные электростанции играют важную роль в энергетике многих странах. Рентгеновское излучение используется в медицине для диагностики внутренних повреждений и заболеваний. Ряд радиоактивных веществ используется в виде меченых атомов для исследования функционирования внутренних органов и изучения процессов обмена веществ. Для лечения рака методами лучевой терапии используются гамма-излучение и другие виды ионизирующих излучений. Радиоактивные вещества широко используются в различных приборах контроля, а ионизирующие излучения (в первую очередь рентгеновское) – для целей промышленной дефектоскопии. Знаки «выход» в зданиях и самолетах благодаря содержанию радиоактивного трития светятся в темноте в случае внезапного отключения электричества. Многие приборы пожарной сигнализации в жилых домах и общественных зданиях содержат радиоактивный америций.

Радиоактивные излучения разного типа с разным энергетическим спектром характеризуются разной проникающей и ионизирующей способностью. Эти свойства определяют характер их воздействия на живое вещество биологических объектов.

Биологическое действие ионизирующего излучения заключается в том, что поглощенная веществом энергия проходящего через него излучения расходуется на разрыв химических связей атомов и молекул, что нарушает нормальное функционирование клеток живой ткани.
Различают следующие эффекты воздействия ионизирующего излучения на организм человека: соматические – острая лучевая болезнь, хроническая лучевая болезнь, местные лучевые поражения; сомато-стохастические (злокачественные опухоли, нарушения развития плода, сокращение продолжительности жизни) и генетические (генные мутации, хромосомные аберрации).

Если источники радиоактивного излучения находятся вне организма человека и тем самым человек облучается снаружи, то говорят о внешнем облучении.

Если радиоактивные вещества, находящиеся в воздухе, пище, воде, попадают внутрь организма человека, то источники радиоактивного излучения оказываются внутри организма и свидетельствуют о внутреннем облучении.

Подчеркнем, что внешнее облучение происходит от непосредственного взаимодействия радиоактивных ионизирующих излучений внешних источников с атомами биологических субстратов организма. Защититься от внешнего излучения можно, поставив на пути движения излучений тот или иной защитный экран и/или применив средства индивидуальной защиты. В частности, специальная защитная одежда полностью защищает от альфа-излучения и частично – от бета-излучения, рентгеновского или гамма-излучения. Для этой цели служат антиконтаминационные костюмы, перчатки, капюшоны, сапоги, перчатки, очки, освинцованные фартуки.

Внутреннее облучение всегда связано с попаданием в организм человека радиоактивных веществ, разнообразие которых обусловливает разнообразие механизмов поглощения, усвоения и вывода этих веществ из организма, степень участия в метаболизме. В результате радиоактивные вещества могут задерживаться и даже накапливаться в организме. Распадаясь, они облучают расположенные вокруг них ткани.
Уменьшение внутреннего облучения достигается только средствами индивидуальной защиты органов дыхания, служащих для защиты дыхательных путей от радиоактивных веществ, находящихся в воздухе, и специальным рационом питания.

Обеспечение радиационной безопасности требует комплекса многообразных защитных мероприятий, зависящих от конкретных условий работы с источниками ионизирующих излучений, а также от типа источника.

Защита временем основана на сокращении времени работы с источником, что позволяет уменьшить дозы облучения персонала. Этот принцип особенно часто применяется при непосредственной работе персонала с малыми радиоактивностями.

Защита расстоянием – достаточно простой и надежный способ защиты. Это связано со способностью излучения терять свою энергию во взаимодействиях с веществом: чем больше расстояние от источника, тем больше процессов взаимодействия излучения с атомами и молекулами, что в конечном итоге приводит к снижению дозы облучения персонала.

Защита экранами – наиболее эффективный способ защиты от излучений. В зависимости от вида ионизирующих излучений для изготовления экранов применяют различные материалы, а их толщина определяется мощностью и излучением.