Защита от электромагнитных, ионизирующих и радиоактивных излучений - Охрана труда. Защита от ионизирующих излучений на производстве

Различают два вида эффекта воздействия на организм ионизирующих излучений: соматический и генетический.

При соматическом эффекте последствия проявляются непосредственно у облучаемого, при генетическом - у его потомства. Соматические эффекты могут быть ранними или отдалёнными. Ранние возникают в период от нескольких минут до 30-60 суток после облучения. К ним относят покраснение и шелушение кожи, помутнение хрусталика глаза, поражение кроветворной системы, лучевая болезнь, летальный исход. Отдалённые соматические эффекты проявляются через несколько месяцев или лет после облучения в виде стойких изменений кожи, злокачественных новообразований, снижения иммунитета, сокращения продолжительности жизни.

Ионизирующее излучение может оказывать влияние на организм как при внешнем (особенно рентгеновское и гамма-излучение), так и при внутреннем (особенно альфа-частицы) облучении. Внутреннее облучение происходит при попадании внутрь организма через лёгкие, кожу и органы пищеварения источников ионизирующего излучения. Внутреннее облучение более опасно, чем внешнее, так как попавшие внутрь ИИИ подвергают непрерывному облучению ничем не защищённые внутренние органы.

Под действием ионизирующего излучения вода, являющаяся составной частью организма человека, расщепляется и образуются ионы с разными зарядами. Полученные свободные радикалы и окислители взаимодействуют с молекулами органического вещества ткани, окисляя и разрушая её. Нарушается обмен веществ. Происходят изменения в составе крови - снижается уровень эритроцитов, лейкоцитов, тромбоцитов и нейтрофилов. Поражение органов кроветворения разрушает иммунную систему человека и приводит к инфекционным осложнениям.

Местные поражения характеризуются лучевыми ожогами кожи и слизистых оболочек. При сильных ожогах образуются отёки, пузыри, возможно отмирание тканей (некрозы).

Смертельные поглощённые дозы для отдельных частей тела следующие:

голова - 20 Гр;
нижняя часть живота - 50 Гр;
грудная клетка -100 Гр;
конечности - 200 Гр.

Защита от ионизирующих излучений

От альфа-лучей можно защититься путём:

увеличения расстояния до ИИИ, т.к. альфа-частицы имеют небольшой пробег;
использования спецодежды и спецобуви, т.к. проникающая способность альфа-частиц невысока;
исключения попадания источников альфа-частиц с пищей, водой, воздухом и через слизистые оболочки, т.е. применение противогазов, масок, очков и т.п.

В качестве защиты от бета-излучения используют:

Ограждения (экраны), с учётом того, что лист алюминия толщиной несколько миллиметров полностью поглощает поток бета-частиц;
методы и способы, исключающие попадание источников бета-излучения внутрь организма.

Защиту от рентгеновского излучения и гамма-излучения необходимо организовывать с учётом того, что эти виды излучения отличаются большой проникающей способностью. Наиболее эффективны следующие мероприятия (как правило, используемые в комплексе): - увеличение расстояния до источника излучения;
- сокращение времени пребывания в опасной зоне;
- экранирование источника излучения материалами с большой плотностью (свинец, железо, бетон и др.);
- использование защитных сооружений (противорадиационных укрытий, подвалов и т.п.) для населения;
- использование индивидуальных средств защиты органов дыхания, кожных покровов и слизистых оболочек;
- дозиметрический контроль внешней среды и продуктов питания.

При использовании различного рода защитных сооружений следует учитывать, что мощность экспозиционной дозы ионизирующего излучения снижается в соответствии с величиной коэффициента ослабления (Косл).

Некоторые величины Косл приведены в (табл. 3.5).

Для населения страны, в случае объявления радиационной опасности существуют следующие рекомендации.

УКРЫТЬСЯ В ЖИЛЫХ ДОМАХ. Важно знать, что стены деревянного дома ослабляют ионизирующее излучение в 2 раза, а кирпичного - в 10 раз. Погреба и подвалы домов ослабляют дозу излучения от 7 до 100 и более раз.

ПРИНЯТЬ МЕРЫ ЗАЩИТЫ ОТ ПРОНИКНОВЕНИЯ В КВАРТИРУ (ДОМ) РАДИАКТИВНЫХ ВЕЩЕСТВ С ВОЗДУХОМ:

закрыть форточки, уплотнить рамы и дверные проёмы.

СДЕЛАТЬ ЗАПАС ПИТЬЕВОЙ ВОДЫ: набрать воду в закрытые ёмкости, подготовить простейшие средства санитарного назначения (например, мыльные растворы для обработки рук), перекрыть краны.

ПРОВЕСТИ ЭКСТРЕННУЮ ЙОДНУЮ ПРОФИЛАКТИКУ (как можно раньше, но только после специального оповещения!). Йодная профилактика заключается в приёме препаратов стабильного йода: йодистого калия или водно-спиртового раствора йода. При этом достигается 100%-ная степень защиты от накопления радиоактивного йода в щитовидной железе.

Водно-спиртовой раствор йода следует принимать после еды 3 раза в день в течение 7 суток:

Детям до 2 лет - по 1-2 капли 5%-ной настойки на 100 мл молока или питательной смеси;
- детям старше 2 лет и взрослым - по 3-5 капель на стакан молока или воды.

Наносить на поверхность кистей рук настойку йода в виде сетки 1 раз в день в течение 7 суток.

Основные принципы радиационной безопасности

Для обеспечения радиационной безопасности необходимо соблюдение следующих принципов:

  1. Принцип нормирования. При соблюдении обеспечивает непревышение допустимых лимитов индивидуальной дозы облучения людей от всех имеющихся источников ионизирующего излучения.
  2. Принцип обоснования. Подразумевает запрет всех видов деятельности, связанных с ионизирующим излучением, при которых полученная польза для общества оказывается меньше риска возможного вреда.
  3. Принцип оптимизации. Состоит в поддержании на как можно более низком достижимом уровне полученных индивидами доз облучения и количества облученных людей при использовании любого из источников ионизирующего излучения.

Нормирование радиационного воздействия

Нормирование уровня ионизирующих излучений связано с учетом характера воздействия ионизирующей радиации на человеческий организм. С 1999 г. в нашей стране оно соответствует международным нормам. Нормирование касается как искусственного, так и природного излучения. Нормированию подлежат основные дозовые пределы, предельно допустимые концентрации содержания радиоактивных веществ в атмосфере, в воде, органах и тканях человека и т.п.

Требования в области радиационной безопасности касаются регулируемых природных источников излучения: изотопов радона и продуктов их распада в воздухе жилых и производственных помещений, гамма-излучения природных радионуклидов, входящих в состав строительных изделий, природных радионуклидов в питьевой воде, удобрениях и полезных ископаемых.

В целях ограничения попадания в окружающую атмосферу, воду, почву содержащих радионуклиды отходов производства и воздействия этих отходов на людей, применяют зонирование территорий, окружающих опасные промышленные предприятия. При необходимости организуют санитарно-защитную зону и зону наблюдения .

Определение 1

Санитарно-защитная зона это территория, окружающая источник ионизирующего излучения, где уровень облучения людей при нормальной эксплуатации этого источника может превышать нормативный показатель дозы облучения населения.

Определение 2

Зона наблюдения – выходящая за пределы санитарно-защитной зоны территория, где возможно влияние радиоактивных выбросов данного предприятия на здоровье проживающего там населения.

Способы защиты населения

Способы защиты от ионизирующих излучений определяются их физическими свойствами. При воздействии жесткого излучения и высокоэнергетических частиц на другие вещества происходит их ионизация. Излучения с разной длиной волны принципиально отличаются друг от друга по интенсивности и степени поглощения их веществом. Самое интенсивное ионизирующее излучение, в первую очередь γ-излучение, практически не поглощается веществами, непрозрачными для лучей с длиной волны оптического диапазона.

Принципы радиационной безопасности осуществляются через уменьшение мощности источников излучения до наименьшей величины; ограничение возможностей поступления радионуклидов в окружающую среду; уменьшение времени работы с источниками радионуклидов; увеличение дистанции между источником и людьми; экранирование источников излучения поглощающими его материалами. К основным методам защиты населения относятся защита расстоянием, экранированием и ограничением поступления радионуклидов в окружающую среду, а также проведение комплекса специальных организационных, технических и лечебно-профилактических мероприятий.

Один из наиболее эффективных способов защиты людей – это применение материалов, эффективно ослабляющих излучение. Их выбирают в зависимости от типа ионизирующего излучения.

В целях защиты от α-излучения используют экраны из стекла или плексигласа толщиной до нескольких миллиметров.

Против β-излучения эффективны материалы с небольшой атомной массой (используют, алюминий). От γ-квантов и нейтронов, обладающих высокой проникающей способностью, требуется более мощная защита.

γ-излучению препятствуют вещества с большой атомной массой и высокой плотностью (свинец, вольфрам), применяют и более дешевые материалы – сталь, чугун, бетон.

Для экранирования от нейтронного облучения используются бериллий, графит и материалы, содержащие водород (парафин, вода).


Интенсивность у-излучения, его способность что-либо ионизировать ослабляется как 1/г2, где г - расстояние между у-источником и облучаемым объектом. То есть с удалением от источника радиации опасность подвергнуться его облучению довольно быстро убывает.
Еще в большей мере это относится к источникам (3-излучения, которое не только ослабляется с расстоянием, но и интенсивно поглощается «по дороге». Так, p-излучение даже родия-106 (Ер = 3,54 МэВ) будет полностью поглощено воздушной «подушкой» толщиной 16 м.
Ho особенно резко ослабляется a-излучение. Даже а-частицы полония-216, имеющие энергию Ea = 6,78 МэВ (самые энергичные из попавших в приложение I), будут полностью поглощены 6-сантиметровым слоем воздуха. Хотя в безвоздушном пространстве космоса a-частица может пропутешествовать миллионы лет и покрыть миллионы километров.
Итак, очевидная защита от радиации - удаление от ее источника. Так что один из основополагающих поведенческих рефлексов, рекомендующий человеку (и не только человеку) держаться подальше от чего-то неясного, потенциально опасного, не обманывает его и здесь...
Однако власть, мысляшая иными категориями, относится к такому поведению человека неодобрительно. Ибо нет в нем ни самопожертвования (затыкания амбразур подручными средствами), ни самоотверженного труда (и экономии на его оплате)... А если человек уходил от опасности не только быстро, но и не спрашивая разрешения, то это называлось паническим бегством.
Фольклор не заставил себя ждать: При атомной бомбардировке нужно завернуться в белое и тихо ползти на кладбище... В белое - понятно, на кладбище - тоже... А почему тихо? Чтобы не было паники...
Однако воспользоваться методом «дистанционного» ослабления радиации удается не всегда. В первую очередь это относится, конечно, к профессионалам, вынужденным оставаться на своих рабочих местах. И тогда остается лишь одно - установить между человеком и источником радиации защитный экран.

И здесь основная проблема - защита от у-излучения. И хотя полностью оно не поглощается ничем, его интенсивность может быть снижена до приемлемой величины защитным экраном, изготовленным из подходящего матер пат а и имеющего достаточную толщину. В приложении 7 приведены таблицы (П7.1-П7.3), в которых связаны жесткость у-излучения, кратность его ослабления и нужная для такого ослабления толщина экрана .
В отличие от у-, p-излучение может быть полностью поглощено в слое вещества достаточной толщины. В приложении 7 (табл. П7.4, П7.5) приведены величины максимального пробега электронов с энергией Ep в воде, в воздухе, в биологической ткани и в некоторых металлах.
Лишь у немногих р-излучающих радионуклидов, вошедших в приложение I, энергия излучения превышает 3 МэВ (самые энер- гичные электроны излучает родий-106: Ep тах = 3,54 МэВ). А это значит, что практически 100%-ную защиту от p-излучения радионуклидов, с которыми мы можем встретиться, обеспечит железный лист толщиной 3...3,5 мм.
Такой экран может быть полезен и в другом качестве - при экспресс-анализе обнаруженного. Так, если показания прикрытого им дозиметра уменьшаются до обычных фоновых, то это значит, что мы, скорее всего, имеем дело с каким-то из р-излучателей. А излучение стронций-иттриевого источника (Epmax =2,27 МэВ), самого массового из «чистых» р-излучателей, будет «отрезано» листом железа толщиной лишь 2 мм.
Поглотителем p-излучения и своего рода экраном, защищающим внутренние органы человека, может быть и сама биологическая ткань: следствием мощного электронного облучения бывает обычно лишь ожог кожи и подкожных тканей. Если это «свежевыпавший» стронций-90, то ожог будет поверхностным (глубина 15...0,2 мм), если уже полежавший (и накопивший иттрий-90), ожог затронет ткани на глубину до 5... 10 мм.
Конечно, при определении толщины экрана, полностью поглощающего электронное излучение, ориентируются на Ep тах - самые энергичные электроны спектра".
1 В p-спектре радионуклида принято отмечать Ep ср - среднюю энергию р-час- тиц - и Ep тgt;,х - их максимальную энергию. Обычно Ep ma*/Ep Ср = 2,5...4. Ho это отношение может быть и значительно большим. Так, для кобальта-60 Ep тах/ЕРср= 16, а для европия-158 - Ep max/Epcps44 :
«...Другой группе летчиков предполагалось назначить бывший на снабжении MO СССР табельный препарат противорадиационной защиты - цистамин. Тем не менее от этой акции военные медики вскоре отказались, так как после приема цистамина у летчиков возникала тошнота и рвота - характерные для большинства радиопротекторов осложнения...»
И еще об одном «радиопротекторе»...
...Говорят, что «Столичная» очень хороша от стронция... Этот невеселый юмор Галича возник не на пустом месте. Вот что пишут по этому поводу командиры наших атомных подводных лодок : Основным лекарством считалось (и считается до сих пор) спиртное. Утверждалось, что 150 граммов водки после работы снимает всю полученную радиацию и улучшает обмен веществ.
И там же: При серьезных авариях сварщик из заключенных знал, что дозу он получит огромную. Он имел право отказаться - и отказывался. Убедить его можно было только таким аргументом: «Получишь стакан спирта! Половину - до начала работы и половину - после».
Ho спиртом «лечились» от радиации не только на флоте: Мне привозили контейнеры с радиоактивными изотопами... сотрудники Министерства госбезопасности. Им нравилась эта работа потому, что к этому времени распространилось мнение, воплощенное в служебную инструкцию, что против излучения помогает спирт. Им полагалась бутылка водки на двоих... (Шноль С.Э. Герои, злодеи, конформисты российской науки. - 2-е изд. М.: Крон-пресс. 2001. С. 592).
...Методы «работы с населением» могут быть самыми разными. Ho описанный может быть отнесен к самым эффективным в России: пить не только можно, но и нужно, и притом за казенный счет... Это вершина творчества атомного Агитпропа...
Хотя способность стакана водки ликвидировать последствия ионизирующего облучения любого уровня, то есть независимость спиртовой дозы от радиационной, должна была бы вызывать сомнения. Ho, похоже, зависимость все же есть...
А. Яковлев в своей книге (Омут памяти. Вагриус. М.: 2000. С. 254), касаясь обсуждения на Политбюро событий в Чернобыле, воспроизводит разговор между президентом АН СССР А.П. Александровом и министром Средмаша Е.П. Славским: Ты помнишь, Ефим, сколько рентген мы с тобой схватили на Новой Земле? И вот ничего, живем. Помню, конечно. Ho мы тогда по литру водки оприходовали...

Различают два вида эффекта воздействия на организм ионизирующих излучений: соматический и генетический. При соматическом эффекте, негативные последствия проявляются непосредственно у облучаемого, при генетическом - у его потомства.

Соматические эффекты могут быть ранними или отдалёнными. Ранние возникают в период от нескольких минут до 60 суток после облучения. К ним относят покраснение и шелушение кожи, помутнение хрусталика глаза, поражение кроветворной системы, лучевая болезнь, летальный исход. Отдалённые соматические эффекты проявляются через несколько месяцев или лет после облучения в виде стойких изменений кожи, злокачественных новообразований, снижения иммунитета, сокращения продолжительности жизни.

При изучении действия излучения на организм были выявлены следующие особенности:

  • 1. Высокая эффективность поглощённой энергии, даже малые её количества могут вызвать глубокие биологические изменения в организме.
  • 2. Наличие скрытого (инкубационного) периода проявления действия ионизирующих излучений.
  • 3. Действие от малых доз может суммироваться или накапливаться.
  • 4. Генетический эффект - воздействие на потомство.
  • 5. Различные органы живого организма имеют свою чувствительность к облучению.
  • 6. Не каждый организм (человек) в целом одинаково реагирует на облучение.
  • 7. Облучение зависит от частоты воздействия. При одной и той же дозе облучения вредные последствия будут тем меньше, чем более дробно оно получено во времени.

Ионизирующее излучение может оказывать влияние на организм как при внешнем (особенно рентгеновское и гамма-излучение), так и при внутреннем (особенно альфа-частицы) облучении. Внутреннее облучение происходит при попадании внутрь организма через лёгкие, кожу и органы пищеварения источников ионизирующего излучения. Внутреннее облучение более опасно, чем внешнее, так как попавшие внутрь источники ИИ подвергают непрерывному облучению ничем не защищённые внутренние органы.

Под действием ионизирующего излучения вода, являющаяся составной частью организма человека, расщепляется, и образуются ионы с разными зарядами. Полученные свободные радикалы и окислители взаимодействуют с молекулами органического вещества ткани, окисляя и разрушая её. Нарушается обмен веществ. Происходят изменения в составе крови - снижается уровень эритроцитов, лейкоцитов, тромбоцитов и нейтрофилов. Поражение органов кроветворения разрушает иммунную систему человека и приводит к инфекционным осложнениям.

Местные поражения характеризуются лучевыми ожогами кожи и слизистых оболочек. При сильных ожогах образуются отёки, пузыри, возможно, отмирание тканей (некрозы).

Смертельные поглощённые дозы для отдельных частей тела следующие:

  • · голова - 20 Гр;
  • · нижняя часть живота - 50 Гр;
  • · грудная клетка - 100 Гр;
  • · конечности - 200 Гр.

При облучении дозами, в 100-1000 раз превышающую смертельную дозу, человек может погибнуть во время однократного облучения (“смерть под лучом”).

Биологические нарушения в зависимости от суммарной поглощённой дозы облучения представлены в таблице 2.

Таблица 2. Биологические нарушения при однократном (до 4-х суток) облучении всего тела человека

Доза облучения, (Гр)

Характер биологических последствий облучения

Видимых нарушений нет

Возможны изменения в крови

Изменения в крови, трудоспособность нарушена

Лёгкая степень лучевой болезни (выздоровление у 100% пострадавших)

Средняя степень лучевой болезни (выздоровление у 100% пострадавших при условии лечения)

Тяжёлая степень лучевой болезни (выздоровление у 50-80% пострадавших при условии специального лечения)

Крайне тяжёлая лучевая болезнь (выздоровление у 30-50% пострадавших при условии специального лечения)

Переходная форма (исход непредсказуем)

100%-ный смертельный исход через несколько суток

Смертельный исход через несколько часов

Смертельный исход через несколько минут

В зависимости от типа ионизирующего излучения могут быть разные меры защиты:

  • · уменьшение времени облучения;
  • · увеличение расстояния до источников ионизирующего излучения;
  • · ограждение или герметизация источников ионизирующего излучения
  • · оборудование и устройство защитных средств;
  • · организация дозиметрического контроля;
  • · применение мер гигиены и санитарии.

А - персонал, т.е. лица, постоянно или временно работающие с источниками ионизирующего излучения;

Б - ограниченная часть населения, т.е. лица, непосредственно не занятые на работе с источниками ионизирующих излучений, но по условиям проживания или размещения рабочих мест могущие подвергаться воздействию ионизирующих излучений;

В - всё население.

Предельно допустимая доза - это наибольшее значение индивидуальной эквивалентной дозы за год, которая при равномерном воздействии в течение 50 лет не вызовет в состоянии здоровья персонала неблагоприятных изменений, обнаруживаемых современными методами.

Природные источники дают суммарную годовую дозу примерно 200 мбэр (космос до 30 мбэр, почва до 38 мбэр, радиоактивные элементы в тканях человека до 37 мбэр, газ радон до 80 мбэр и другие источники).

Искусственные источники добавляют ежегодную эквивалентную дозу облучения примерно в 150-200 мбэр (медицинские приборы и исследования порядка 100-150 мбэр, просмотр телевизора около 1-3 мбэр, ТЭЦ на угле до 6 мбэр, последствия испытаний ядерного оружия до 3 мбэр и другие источники).

Всемирной организацией здравоохранения предельно допустимая (безопасная) эквивалентная доза облучения для жителя планеты определена в 35 бэр, при условии её равномерного накопления в течение 70 лет жизни.

От альфа-частиц можно защититься путём:

  • 1) увеличения расстояния до источников ионизирующих излучений, т.к. альфа-частицы имеют небольшой пробег;
  • 2) использования спецодежды и спецобуви, т.к. проникающая способность альфа-частиц невысока;
  • 3) исключения попадания источников альфа-частиц с пищей, водой, воздухом и через слизистые оболочки, т.е. применение противогазов, масок, очков и т.п.

В качестве защиты от бета-частиц используют:

  • 1) ограждения (экраны), с учётом того, что лист алюминия толщиной несколько миллиметров полностью поглощает поток бета-частиц;
  • 2) методы и способы, исключающие попадание источников бета-частиц внутрь организма.

Защиту от рентгеновского и гамма-излучения необходимо организовывать с учётом того, что эти виды излучения отличаются большой проникающей способностью. Наиболее эффективны следующие мероприятия (как правило, используемые в комплексе):

  • 1) увеличение расстояния до источника излучения;
  • 2) сокращение времени пребывания в опасной зоне;
  • 3) экранирование источника излучения материалами с большой плотностью (свинец, бетон и др.);
  • 4) использование защитных сооружений (противорадиационных укрытий, подвалов и т.п.) для населения;
  • 5) использование индивидуальных средств защиты органов дыхания, кожных покровов и слизистых оболочек;
  • 6) дозиметрический контроль внешней среды и продуктов питания.

При использовании различного рода защитных сооружений следует учитывать, что мощность экспозиционной дозы ионизирующего излучения снижается в соответствии с величиной коэффициента ослабления (Косл).

Некоторые величины Косл приведены в таблице 3.

Таблица 3. Средние значения коэффициента ослабления дозы радиации

Наименование укрытий и транспортных средств или условия расположения населения (войск)

Открытое расположение на местности

Заражённые траншеи, канавы, окопы, щели

Вновь отрытые траншеи, канавы, окопы, щели

Перекрытые траншеи, канавы, окопы и т.п.

ТРАНСПОРТНЫЕ СРЕДСТВА

Железнодорожные платформы

Автомобили, автобусы и крытые вагоны

Пассажирские вагоны

Бронетранспортёры

ПРОМЫШЛЕННЫЕ И АДМИНИСТРАТИВНЫЕ ЗДАНИЯ

Производственные одноэтажные здания (цехи)

Производственные и административные трёхэтажные здания

ЖИЛЫЕ КАМЕННЫЕ ДОМА

Одноэтажные

Двухэтажные

Трёхэтажные

Пятиэтажные

ЖИЛЫЕ ДЕРЕВЯННЫЕ ДОМА

Одноэтажные

«ИНСТИТУТ УПРАВЛЕНИЯ»

(г. Архангельск)

Волгоградский филиал

Кафедра «_______________________________»

Контрольная работа

по дисциплине: « безопасность жизнедеятельности »

тема: «ионизирующее излучение и защита от них »

Выполнил студент

гр. ФК – 3 – 2008

Зверков А. В.

(Ф.И.О.)

Проверил преподаватель:

_________________________

Волгоград 2010

Введение 3

1.Понятие ионизирующего излучения 4

2. Основные методы обнаружения ИИ 7

3. Дозы излучения и единицы измерения 8

4. Источники ионизирующего излучения 9

5. Средства защиты населения 11

Заключение 16

Список используемой литературы 17


С ионизирующим излучением и его особенностями человечество познакомилось совсем недавно: в 1895 году немецкий физик В.К. Рентген обнаружил лучи высокой проникающей способности, возникающие при бомбардировке металлов энергетическими электронами (Нобелевская премия, 1901 г.), а в 1896 г. А.А. Беккерель обнаружил естественную радиоактивность солей урана. Вскоре этим явлением заинтересовалась Мария Кюри, молодой химик, полька по происхождению, которая и ввела в обиход слова «радиоактивность». В 1898 году она и ее муж Пьер Кюри обнаружили, что уран после излучения превращается в другие химические элементы. Один из этих элементов супруги назвали полонием в память о родине Марии Кюри, а еще один – радием, поскольку по-латыни это слово обозначает «испускающий лучи». Хотя новизна знакомства состоит лишь в том, как люди пытались ионизирующее излучение использовать, а радиоактивность, и сопутствующие ей ионизирующие излучения существовали на Земле задолго до зарождения на ней жизни и присутствовали в космосе до возникновения самой Земли.

Нет необходимости говорить о том положительном, что внесло в нашу жизнь проникновение в структуру ядра, высвобождение таившихся там сил. Но как всякое сильнодействующее средство, особенно такого масштаба, радиоактивность внесла в среду обитания человека вклад, который к благотворным никак не отнесёшь.

Появилось также число пострадавших от ионизирующей радиации, а сама она начала осознаваться как опасность, способная привести среду обитания человека в состояние, не пригодное для дальнейшего существования.

Причина не только в тех разрушениях, которые производит ионизирующее излучение. Хуже то, что оно не воспринимается нами: ни один из органов чувств человека не предупредит его о приближении или сближением с источником радиации. Человек может находиться в поле смертельно опасного для него излучения и не иметь об этом ни малейшего представления.

Такими опасными элементами, в которых соотношение числа протонов и нейтронов превышает 1…1,6. В настоящее время из всех элементов таблицы Д.И. Менделеева известно более 1500 изотопов. Из этого количества изотопов лишь около 300 стабильных и около 90 являются естественными радиоактивными элементами.

Продукты ядерного взрыва содержат более 100 нестабильных первичных изотопов. Большое количество радиоактивных изотопов содержится в продуктах деления ядерного горючего в ядерных реакторах АЭС.

Таким образом, источниками ионизирующего излучения являются искусственные радиоактивные вещества, изготовленные на их основе медицинские и научные препараты, продукты ядерных взрывов при применении ядерного оружия, отходы атомных электростанций при авариях на них.

Радиационная опасность для населения и всей окружающей среды связана с появлением ионизирующих излучений (ИИ), источником которых являются искусственные радиоактивные химические элементы (радионуклиды), которые образуются в ядерных реакторах или при ядерных взрывах (ЯВ). Радионуклиды могут попадать в окружающую среду в результате аварий на радиационно-опасных объектах (АЭС и др. объектах ядерного топливного цикла – ЯТЦ), усиливая радиационный фон земли.

Ионизирующими излучениями называют излучения, которые прямо или косвенно способны ионизировать среду (создавать раздельные электрические заряды). Все ионизирующие излучения по своей природе делятся на фотонные (квантовые) и корпускулярные. К фотонному (квантовому) ионизирующему излучению относятся гамма-излучение, возникающее при изменении энергетического состояния атомных ядер или аннигиляции частиц, тормозное излучение, возникающее при уменьшении кинетической энергии заряженных частиц, характеристическое излучение с дискретным энергетическим спектром, возникающее при изменении энергетического состояния электронов атома и рентгеновское излучение, состоящее из тормозного и/или характеристического излучений. К корпускулярному ионизирующему излучению относят α-излучение, электронное, протонное, нейтронное и мезонное излучения. Корпускулярное излучение, состоящее из потока заряженных частиц (α-, β-частиц, протонов, электронов), кинетическая энергия которых достаточна для ионизации атомов при столкновении, относится к классу непосредственно ионизирующего излучения. Нейтроны и другие элементарные частицы непосредственно не производят ионизацию, но в процессе взаимодействия со средой высвобождают заряженные частицы (электроны, протоны), способные ионизировать атомы и молекулы среды, через которую проходят. Соответственно, корпускулярное излучение, состоящее из потока незаряженных частиц, называют косвенно ионизирующим излучением.

Нейтронное и гамма излучение принято называть проникающеё радиацией или проникающим излучением.

Ионизирующие излучения по своему энергетическому составу делятся на моноэнергетические (монохроматические) и немоноэнергетические (немонохроматические). Моноэнергетическое (однородное) излучение – это излучение, состоящее из частиц одного вида с одинаковой кинетической энергией или из квантов одинаковой энергии. Немоноэнергетическое (неоднородное) излучение – это излучение, состоящее из частиц одного вида с разной кинетической энергией или из квантов различной энергии. Ионизирующее излучение, состоящее из частиц различного вида или частиц и квантов, называется смешанным излучением.

При авариях реакторов образуются a + ,b ± частицы и g-излучение. При ЯВ дополнительно образуются нейтроны -n ° .

Рентгеновское и g-излучение обладают высокой проникающей и достаточно ионизирующей способностью (g в воздухе может распространяться до 100м и косвенно создать 2-3 пары ионов за счёт фотоэффекта на 1 см пути в воздухе). Они представляют собой основную опасность как источники внешнего облучения. Для ослабления g-излучения требуются значительные толщи материалов.

Бета- частицы (электроны b - и позитроны b +) краткобежны в воздухе (до 3,8м/МэВ), а в биоткани – до несколько миллиметров. Их ионизирующая способность в воздухе 100-300 пар ионов на 1 см пути. Эти частицы могут действовать на кожу дистанционно и контактным путём (при загрязнении одежды и тела), вызывая «лучевые ожоги». Опасны при попадании внутрь организма.

Альфа – частицы (ядра гелия) a + краткобежны в воздухе (до 11 см), в биоткани до 0,1 мм. Они обладают большой ионизирующей способностью (до 65000 пар ионов на 1 см пути в воздухе) и особо опасны при попадании внутрь организма с воздухом и пищей. Облучение внутренних органов значительно опаснее наружного облучения.

Последствия облучения для людей могут быть самыми различными. Они во многом определяются величиной дозы облучения и временем её накопления. Возможные последствия облучения людей при длительном хроническом облучении, зависимость эффектов от дозы однократного облучения приведены в таблице.

Таблица 1. Последствия облучения людей.

Таблица 1.
Радиационные эффекты облучения
1 2 3
Телесные (соматические) Вероятностные телесные (соматические - стохастические) Гинетические
1 2 3
Воздействуют на облучаемого. Имеют дозовый порог. Условно не имеют дозового порога.
Острая лучевая болезнь Сокращение продолжительности жизни. Доминантные генные мутации.
Хроническая лучевая болезнь. Лейкозы (скрытый период 7-12 лет). Рецессивные генные мутации.
Локальные лучевые повреждения. Опухоли разных органов (скрытый период до 25 лет и более). Хромосомные абберации.

2. Основные методы обнаружения ИИ

Чтобы избежать ужасных последствий ИИ, необходимо производить строгий контроль служб радиационной безопасности с применением приборов и различных методик. Для принятия мер защиты от воздействия ИИ их необходимо своевременно обнаружить и количественно оценить. Воздействуя на различные среды ИИ вызывают в них определенные физико-химические изменения, которые можно зарегистрировать. На этом основаны различные методы обнаружения ИИ.

К основным относятся: 1) ионизационный, в котором используется эффект ионизации газовой среды, вызываемой воздействием на неё ИИ, и как следствие – изменение ее электропроводности; 2) сцинтилляционный, заключающийся в том, что в некоторых веществах под воздействием ИИ образуются вспышки света, регистрируемые непосредственным наблюдением или с помощью фотоумножителей; 3) химический, в котором ИИ обнаруживаются с помощью химических реакций, изменения кислотности и проводимости, происходящих при облучении жидкостных химических систем; 4) фотографический, заключающийся в том, что при воздействии ИИ на фотопленку на ней в фотослое происходит выделение зерен серебра вдоль траектории частиц; 5) метод, основанный на проводимости кристаллов, т.е. когда под воздействием ИИ возникает ток в кристаллах, изготовленных из диэлектрических материалов и изменяется проводимость кристаллов из полупроводников и др.