Возможные аварии на радиационно опасных объектах. Аварии на радиационно опасных объектах

В настоящее время в нашей стране на многих объектах экономики, военных объектах, в научных центрах и на других предприятиях используются радиоактивные вещества. Отдельные системы, блоки и устройства этих объектов преобразуют энергию, получаемую в результате деления ядер урана и некоторых других тяжелых элементов, в электрическую и другие виды энергии (тепловую, механическую). Ряд предприятий используют радиоактивные вещества в технологических процессах или хранят их на своей территории.

В России в настоящее время имеется 10 атомных электростанций (30 энергоблоков), 113 исследовательских ядерных установок, 12 промышленных предприятий топливного цикла, 9 атомных судов с объектами их обеспечения, а также 13 тыс. других предприятий и организаций, осуществляющих свою деятельность с использованием радиоактивных веществ и изделий на их основе. Все эти предприятия относятся к объектам с ядерными компонентами, но радиационно опасными из них являются не все.

    Запомните!
    Ионизирующее излучение создается при радиоактивном распаде, ядерных превращениях, торможении заряженных частиц в веществе и образует при взаимодействии со средой ионы разных знаков.
    Радиационно опасный объект - это объект, на котором хранят, перерабатывают или транспортируют радиоактивные вещества, при аварии на котором или при его разрушении может произойти облучение ионизирующим излучением людей или радиоактивное загрязнение окружающей среды.
    Под радиоактивным загрязнением окружающей среды понимается присутствие радиоактивных веществ на поверхности местности, в воздухе, в теле человека в количестве, превышающем уровни, установленные нормами радиационной безопасности.

Это должен знать каждый

К радиационно опасным объектам относятся:

  • предприятия ядерного топливного цикла (предприятия урановой и радиохимической промышленности, места переработки и захоронения радиоактивных отходов);
  • атомные станции (атомные электрические станции (АЭС), атомные теплоэлектроцентрали (АТЭЦ), атомные станции теплоснабжения (АТС);
  • объекты с ядерными энергетическими установками (корабельными, космическими и войсковыми атомными электростанциями);
  • ядерные боеприпасы и склады для их хранения.

Предприятия ядерного топливного цикла осуществляют добычу урановой руды, ее обогащение, изготовление топливных элементов для ядерных энергетических реакторов, переработку радиоактивных отходов, их хранение и окончательное размещение (захоронение).

Наиболее характерным последствием аварий на предприятиях ядерного топливного цикла (возгорание горючих компонентов и радиоактивных материалов, появление течей и разрывов в резервуарах-хранилищах и др.) является выброс радиоактивных веществ в окружающую среду, который приведет к облучению людей выше установленных норм или к радиоактивному загрязнению окружающей среды.

Атомная электростанция (АЭС) - это электростанция, на которой ядерная энергия преобразуется в электрическую. На АЭС тепло, выделяющееся в ядерном реакторе, используется для получения водяного пара, вращающего турбогенератор. Основными причинами аварий на АЭС могут быть нарушение технологической дисциплины оперативным персоналом станции и недостатки в его профессиональной подготовке, т. е. «человеческий фактор».

Объекты с ядерными энергетическими установками делятся на корабельные объекты, войсковые атомные электростанции, космические ядерные электроустановки. Причинами аварий на этих установках могут служить разгерметизация первого контура реактора (первый контур находится внутри корпуса реактора) или механические повреждения реактора.

Ядерные боеприпасы и взрывное устройство к ним в мирное время хранятся на складах в готовности к выдаче и боевому применению. Причинами возникновения аварийной ситуации с ядерными боеприпасами могут быть столкновение и опрокидывание транспортных средств при их транспортировке, пожары в сборочных помещениях и хранилищах.

Максимальную опасность для населения и окружающей среды представляют аварии на атомных станциях.

    Статистика

    В Российской Федерации семь из десяти действующих АЭС - Ленинградская, Курская, Смоленская, Калининская, Нововоронежская, Ба-лаковская (Саратовская область), Ростовская - расположены в густонаселенной европейской части страны. В 30-километровых зонах АЭС проживает более 4 млн человек.
    За время развития ядерной энергетики (в период с 1957 г. по настоящее время) в мире произошли четыре крупные аварии на АЭС: в 1957 г. в Великобритании (Виндскейл), в 1979 г. - в США (Три-Майл-Айленд), в 1986 г. в СССР (Чернобыль) и в 2011 г. в Японии (Фукусима). Двум последним авариям была присвоена высшая, 7-я категория.

Международное агентство по атомной энергетике (МАГАТЭ) разработало специальную шкалу классификации тяжести аварий на АЭС. Шкала имеет 7 категорий тяжести последствий аварий и происшествий на АЭС и предназначена для оценки серьезности происшедшего, быстрого оповещения и выбора адекватных мер безопасности.



Исторические факты

Коротко приведем анализ последствий аварии на Чернобыльской АЭС.

26 апреля 1986 г. на 4-м энергоблоке Чернобыльской АЭС произошел взрыв реактора с разрушением его активной зоны и интенсивным выбросом в окружающую среду радиоактивных веществ в течение 10 суток. В результате радиоактивному загрязнению подверглись территории России, Белоруссии и Украины, а также территории стран Балтии и ряда других европейских государств.

В результате взрыва на станции погибли 2 человека, 145 человек из работников станции, пожарных и других ликвидаторов последствий получили дозу облучения от 100 до 1600 бэр. 27 человек из них вскоре скончались.

Выброшенные из реактора радионуклиды создали вблизи него и в пределах 30-километровой зоны большие уровни радиации, жители из этих районов были эвакуированы. Позже к этой зоне эвакуации присоединили местности, где суммарная доза получения населением к первому году после аварии могла бы превысить 10 бэр. В целом до конца 1986 г. из 188 населенных пунктов, включая г. Припять (город чернобыльских энергетиков), было отселено 116 тыс. человек.

Необходимо отметить, что наибольшую угрозу здоровью неэвакуированного населения представляло загрязнение воздуха и почвы радиоактивным йодом. Попав внутрь, он активно захватывался из крови щитовидной железой, приводя к местному облучению в дозах более 300 бэр.

Из-за нерешительности и некомпетентности руководителей местных органов власти решение на проведение йодной профилактики было принято с большим опозданием - 6 мая 1986 г. В результате большие дозы облучения (более 300 бэр) щитовидной железы получили тысячи людей.

В основе биологического воздействия ионизирующего излучения на организм человека лежит степень ионизации атомов и молекул организма выше допустимой нормы. При допустимой норме ионизации организм восстанавливает нарушения, а превышение нормы приводит к развитию лучевой болезни.

    Внимание!
    Лучевая болезнь возникает при воздействии на организм ионизирующих излучений в дозах, превышающих предельно допустимы.

В настоящее время хорошо изучены последствия однократного облучения человека и выделено несколько степеней лучевого поражения.

Острая лучевая болезнь легкой (I) степени развивается при кратковременном облучении всего тела в дозе, превышающей 100 бэр. Она сопровождается головокружением, редко - тошнотой, отмечается через 2-3 ч после облучения.

Острая лучевая болезнь средней (II) степени развивается при воздействии ионизирующего излучения в дозе от 200 до 400 бэр. Первичная реакция (головная боль, тошнота, иногда рвота) возникает через 1-2 ч. Острая лучевая болезнь тяжелой (III) степени наблюдается при воздействии ионизирующего излучения в дозе 400-600 бэр. Первичная реакция возникает через 30-60 мин и резко выражена (повторная рвота, повышение температуры тела, головная боль).

Острая лучевая болезнь крайне тяжелой (IV) степени отмечается при воздействии ионизирующего излучения в дозе более 600 бэр. Симптомы обусловлены глубоким поражением кроветворной системы, приобретают первостепенное значение поражения других органов (кишечника, кожи, головного мозга) и интоксикация (состояние организма, вызванное воздействием токсических веществ). Смертельные исходы практически неизбежны.

Необходимо отметить, что при хроническом облучении потоками излучения малой дозы суммарные дозы могут быть большими. Наносимые организму повреждения частично могут восстанавливаться. Поэтому доза более 50 бэр, приводящая при однократном воздействии к болезненным явлениям, при хроническом облучении, растянутом, к примеру, на 10 лет, к тяжелым отклонениям в здоровье человека может не привести. Эти обстоятельства позволяют установить допустимые уровни облучения.

Для того чтобы можно было количественно определить степень воздействия облучения на организм, было введено понятие эквивалентной дозы облучения, которую связывают со степенью ионизации вещества. Доза измеряется энергией ионизирующего излучения, переданного массе облучаемого вещества.

В системе СИ единицей эквивалентной дозы служит зиверт (Зв). 1 Зв - 100 бэр. (Заметим, что понятие дозы всегда определяется по отношению к единице массы или объема вещества.)

Без ядерной энергетики человечеству, вероятно, не обойтись. Поэтому в настоящее время проводятся интенсивные исследования с целью повышения безопасности реакторов АЭС, усиления средств их защиты, в том числе и от ошибочных действий обслуживающего персонала, принимаются меры повышения уровня общей культуры в области безопасности у населения, проживающего в зонах АЭС.

Вопросы

  1. Какие объекты относятся к радиационно опасным объектам?
  2. Какое событие понимается как радиационная авария?
  3. Какие вещества относятся к радиоактивным?
  4. Что такое ионизирующее излучение и каково его влияние на организм человека?
  5. Какими величинами определяется степень воздействия ионизирующего излучения на организм человека?

Задание

Перечислите причины появления лучевой болезни и существующие степени ее проявления.

МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №4 им. В.В.КЛОЧКОВА

«Аварии на радиационно-опасных объектах и их последствия»

Экзаменационный реферат

по Основам Безопасности Жизнедеятельности

Выполнил ученик 9А класса Ильичев Олег

Чкаловск 2011 г.

1. Вступление

2. Радиация вокруг нас

3. Радиационно-опасные объекты (РОО)

4. Виды аварий на РОО

5. Последствия аварий на РОО

5.1 Радиационное заражение местности

5.2 Радиационные эффекты облучения людей

6. Правила безопасного поведения

7. Защита людей при авариях на РОО

8. Из истории радиационных аварий

8.2 Чернобыль

8.3 Фукусима-1

9.Заключение

вступление

Экологическая катастрофа… Данное словосочетание страшноедаже (или особенно) для обывательского сознания. И все же специалисты оказываются или наиболее чувствительными, или наиболее толстокожими, оперирующими цифрами о катастрофах и катаклизмах с таким спокойствием в языковых средствах, что начинаешь и их подозревать в антиэкологическом сознании. Известно, что экологические проблемы возникают из-за антиэкологического характера общества, а в конечном счете - всего человечества. Вспомним Ф.Ницше:“Безумие единиц - исключение, а безумие групп, партий, народов, времен - правила”. И яочень слабоверю в излечение времен и народов именно в этом плане экологического сознания. Как еще слабее - в совесть и моральные тормоза. Остается одно - закон. И здесь я, возможно, выскажу крамольную мысль: нужен закон, провозглашающий природу, окружающую среду, высшим по отношению к человеку субъектом права. Только при такой постановке вопроса можно говорить о спасении человечества, спасая природу. Только при таком подходе к решению экологических проблем можно надеяться, что безумие времен и народов станет исключением.

Эта тема выбрана на основе актуальности проблемы радиационной безопасности в целом и участившихся в последнее время техногенных и природных аварий на современных атомных объектах, начиная с 1 сентября 1944 года в США (техногенная) и до 11 марта 2011(природная) года в Японии. Все это говорит о том, что проблема радиационной безопасности напрямую начинает угрожать жизни и здоровью наций.

Радиация вокруг нас

Ионизирующее излучение, в частности радио­активное, занимает особое место среди многочисленных факторов среды обитания человека, так или иначе вли­яющих на его здоровье и жизнь.

Ионизирующее излучение было обнаружено сравнительно недавно. В 1895 г. известный немецкий физик В. Рентген от­крыл излучение, названное его именем. Чуть позже, в 1896 г., А. Беккерель обнаружил излучение солей урана, а в 1898 г. М. Кюри и П. Кюри установили излучение полония и радия, а также факт превращения радионуклидов в другие химиче­ские элементы (была открыта цепочка распадов). С этого времени изучение ионизирующего излучения и ядерных реакций – стало одним из приоритетных направлений физики. Исследования дорого обошлись научному миру - около 4000 ученых отдали свои жизни, изучая эти явления.

Ионизирующее излучение представляет собой потоки заряженных и нейтральных частиц, а также электромаг­нитных волн. При прохождении через вещество ионизи­рующее излучение вызывает в нем ионизацию, т. е. пре­вращение нейтральных, устойчивых атомов и молекул вещества в электрически заряженные, возбужденные неустойчивые частицы. Это сложное излучение, вклю­чающее в себя излучения нескольких видов.

Альфа-излучение - ионизирующее излучение, со­стоящее из альфа-частиц (ядер гелия), испускаемых при ядерных превращениях. Альфа-частицы распрост­раняются на небольшие расстояния: в воздухе - не бо­лее 10 см, в био - ткани (живой клетке) - до 0,1 мм. Они полностью поглощаются листом бумаги и не пред­ставляют опасности для человека, за исключением слу­чаев непосредственного контакта с кожей.

Бета-излучение - электронное ионизирующее излу­чение, испускаемое при ядерных превращениях. Бе­та-частицы распространяются в воздухе до 15 м, в био - ткани - на глубину до 15 мм, в алюминии - до 5 мм. Одежда человека почти наполовину ослабляет их дейст­вие. Они практически полностью поглощаются оконны­ми стеклами и любым металлическим экраном толщи­ной в несколько миллиметров. Но при контакте с кожей они также опасны.

Гамма-излучение - фотонное (электромагнитное) ионизирующее излучение, испускаемое при ядерных превращениях и распространяющееся со скоростью све­та. Гамма - частицы распространяются в воздухе на сотни метров и свободно проникают сквозь одежду, тело чело­века и значительные толщи материалов. Это излучение считают самым опасным для человека.

Главной характеристикой степени опасности ионизи­рующих излучений служит доза излучения: количество энергии ионизирующего излучения, поглощаемое 1 г ве­щества.

Дозу излучения принято измерять в рентгенах (Р). А для оценки последствий облучения человека различ­ными видами излучений применяют специальную еди­ницу измерения дозы облучения - бэр (биологический эквивалент рентгена).

Радиационно-опасные объекты (РОО)

Под радиационно-опасными понимаются объекты, использующие в технологических процессах или имеющие на хранении радиоактивные вещества, которые в случае аварии вызывают опасные для здоровья людей и окружающей среды загрязнения.

Радиационная авария - происшествие, приведшее к выходу (выбросу) радиоактивных продуктов и ионизирующих излучений за предусмотренные проектом пределы (границы) в количествах, превышающих установленные нормы безопасности.

Основным показателем степени потенциальной опасности РОО при прочих равных условиях (надежность технологических процессов, качество профессиональной подготовки специалистов и т.д.) является общее количество радиоактивных веществ, находящихся на каждом из них.

К радиационно-опасным объектам относятся:

атомные станции различного назначения;

2) предприятия по регенерации отработанного топлива и

3) временному хранению радиоактивных отходов;

4) научно-исследовательские организации, имеющие

5) исследовательские реакторы или ускорители частиц; морские

6) суда с энергетическими установками;

7) хранилища ядерных боеприпасов; полигоны, где проводятся

8) испытания ядерных зарядов.

Кроме того, ионизирующее излучение, опасное для здоровья людей, может исходить и от таких широко распространенных техногенных источников, как медицинская рентгенодиагностическая аппаратура и приборы, основанные на использовании радиоактивных изотопов, применяемые в строительной индустрии, геологии и т.д.

Из перечисленных радиационно-опасных объектов наибольшим количеством радиоактивности обладают работающие ядерные реакторы. Чем больше мощность реактора, тем больше количество продуктов деления накапливается в нем за одно и то же время работы. Грозную опасность для жизни и здоровья населения несут чрезвычайные ситуации, связанные с возможностью радиационного заражения. Достаточно сказать, что период полураспада, т.е. времени снижения мощности радиоактивного излучения на 50%, урана-235 и плутония-239 составляет около 25 тыс. лет, а именно эти элементы используются в ядерном оружии. Ядерное топливо активно применяется для производства электроэнергии. В 26 странах мира на атомных электростанциях насчитывается 430 энергоблоков (строятся еще 48). Они вырабатывают энергии: во Франции - 75% (от производимой в стране), в Швеции - 51, в Японии - 40, в США - 24, в России - 15%.

В Российской Федерации имеется 33 энергоблока на 10 АЭС, 113 исследовательских ядерных установок, 13 промышленных предприятий топливного цикла, а также около 13 тыс. других предприятий и объектов, осуществляющих деятельность с использованием радиоактивных веществ и изделий на их основе.

Для обеспечения надежной работы АЭС и радиационной безопасности персонала и населения проектами предусматриваются соответствующие системы безопасности. Например, на АЭС с водно-паровым энергетическим реактором имеется пять барьеров безопасности. Это независимые друг от друга препятствия на пути ионизирующих излучений от топлива до окружающей среды. В результате ослабления ионизирующих излучений барьерами безопасности облучение населения, проживающего вблизи от АЭС типа ВПЭР, при ее безаварийной работе не превышает 0,2 мбэра в год.

Виды аварий на РОО

Радиационные аварии подразделяются на:

Локальные - нарушение в работе РОО, при котором не произошел выход радиоактивных продуктов или ионизирующих излучений за предусмотренные границы оборудования, технологических систем, зданий и сооружений в количествах, превышающих установленные для нормальной эксплуатации предприятия значения;

Местные - нарушение в работе РОО, при котором произошел выход радиоактивных продуктов в пределах санитарно-защитной зоны и в количествах, превышающих установленные нормы для данного предприятия;

Общие - нарушение в работе РОО, при котором произошел выход радиоактивных продуктов за границу санитарно-защитной зоны и в количествах, приводящих к радиоактивному загрязнению прилегающей территории и возможному облучению проживающего на ней населения выше установленных норм.

Классификация аварий на радиационно-опасных объектах проводится с целью заблаговременной разработки мер, реализация которых в случае аварии должна уменьшить вероятные последствия и содействовать успешной их ликвидации.

Возможные аварии на АЭС и других радиационно-опасных объектах классифицируют по двум признакам:

по типовым нарушениям нормальной эксплуатации;

по характеру последствий для персонала, населения и окружения среды.

При анализе аварий используют цепочку «исходное событие - пути протекания - последствия».

Аварии, связанные с нарушениями нормальной эксплуатации, подразделяются на проектные, проектные с наибольшими последствиями и за проектные. Под нормальной эксплуатацией АЭС понимается ее состояние в соответствии с принятой в проекте технологией производства энергии, включая работу на заданных уровнях мощности, процессы пуска и остановки, техническое обслуживание, ремонты, перегрузку ядерного топлива.

Причинами проектных аварий, как правило, являются исходные события, связанные с нарушением барьеров безопасности, предусмотренных проектом каждого реактора. Именно в расчете на эти исходные события и строится система безопасности АЭС.

Первый тип аварий - нарушение первого барьера безопасности, а проще - нарушение герметичности оболочек твэлов (тепловыделяющих элементов) из-за кризиса теплообмена или механических повреждений. Кризис теплообмена - это нарушение температурного режима (перегрев) твэлов.

Второй тип аварий - нарушение первого и второго барьеров безопасности. При попадании радиоактивных продуктов в теплоноситель вследствие нарушения первого барьера дальнейшее их распространение останавливается вторым, который образует корпус реактора.

Третий тип аварий - нарушение всех барьеров безопасности. При нарушенных первом и втором барьерах теплоноситель с радиоактивными продуктами деления удерживается от выхода в окружающую среду третьим барьером - защитной оболочкой реактора. Под ним понимается совокупность всех конструкцией, систем и устройств, которые должны с высокой степенью надежности обеспечить локализацию выбросов.

Ядерную аварию может вызвать также образование критической массы при перегрузке, транспортировке и хранении твэлов. всех барьеров безопасности.

Последствия аварий на РОО

Основными поражающими факторами радиационных аварий являются:

воздействие внешнего облучения (гамма - и рентгеновского; бета – и гамма-излучения; гамма - нейтронного излучения и др.);

внутреннее облучение от попавших в организм человека радионуклидов (альфа - и бета-излучение);

сочетанное радиационное воздействие как за счет внешних источников излучения, так и за счет внутреннего облучения;

комбинированное воздействие как радиационных, так и нерадиационных факторов (механическая травма, термическая травма, химический ожог, интоксикация и др.).

После аварии на радиоактивном следе основным источником радиационной опасности является внешнее облучение. Ингаляционное поступление радионуклидов в организм практически исключено при правильном и своевременном применении средств защиты органов дыхания.

Внутренне облучение развивается в результате поступления радионуклидов в организм с продуктами питания и водой. В первые дни после аварии наиболее опасны радиоактивные изотопы йода, которые накапливается щитовидной железой. Наибольшая концентрация изотопов йода обнаруживается в молоке, что особенно опасно для детей.

Через 2-3 месяца после аварии основным агентом внутреннего облучения становится радиоактивный цезий, проникновение которого в организм возможно с продуктами питания. В организм человека могут попасть и другие радиоактивные вещества (стронций, плутоний), загрязнение окружающей среды которыми имеет ограниченные масштабы.

Характер распределения радиоактивных веществ в организме:

накопление в скелете (кальций, стронций, радий, плутоний);

концентрируются в печени (церий, лантан, плутоний и др.);

равномерно распределяются по органам и системам (тритий, углерод, инертные газы, цезий и др.);

радиоактивный йод избирательно накапливается в щитовидной железе (около 30%), причем удельная активность ткани щитовидной железы может превышать активность других органов в 100-200 раз.

Основными параметрами, регламентирующими ионизирующее излучение, является экспозиционная, поглощенная и эквивалентная дозы.

Экспозиционная доза - основана на ионизирующем действия излучения, это - количественная характеристика поля ионизирующего излучения. Единицей экспозиционной дозы является рентген (Р). При дозе 1Р в 1см2 воздуха образуется 2,08 · 109 пар ионов. В международной системе СИ единицей дозы является кулон на килограмм (Кл/кг) · 1Кл/кг=3876 Р.

радиационная авария облучение дозиметрический

Поглощенная доза - количество энергии, поглощенной единицей массы облучаемого вещества. Специальной единицей поглощенной дозы является 1 рад. В международной системе СИ - 1 Грей (Гр).1 Гр=100 рад.

Эквивалентная доза (ЭД) - единицей измерения является бэр. За 1 бэр принимается такая поглощенная доза любого вида ионизирующего излучения, которая при хроническом облучении вызывает такой же эффект, что и 1 рад рентгеновского или гамма-излучения. В международной системе СИ единицей ЭД является Зиверт (Зв).1 Зв равен 100 бэр.

Организм человека постоянно подвергается воздействию космических лучей и природных радиоактивных элементов, присутствующих в воздухе, почве, в тканях самого организма. Уровни природного излучения от всех источников в среднем соответствуют 100 мбэр в год, но в отдельных районах - до 1000 мбэр в год.

Международная комиссия по радиационной защите (МКРЗ) рекомендовала в качестве предельно допустимой дозы (ПДД) разового аварийного облучения 25 бэр и профессионального хронического облучения-до 5 бэр в год и установила в 10 раз меньшую дозу для ограниченных групп населения.

Для оценки отдаленных последствий действия излучения в потомстве учитывают возможность увеличения частоты мутаций. Доза излучения, вероятнее всего удваивающая частоту самопроизвольных мутаций, не превышает 100 бэр на поколение. Генетически значимые дозы для населения находятся в пределах 7-55 мбэр/год.

При общем внешнем облучении человека дозой в 150-400 рад развивается лучевая болезнь легкой и средней степени тяжести; при дозе 400-600 рад - тяжелая лучевая болезнь; облучение в дозе свыше 600 рад является абсолютно смертельным, если не используются меры профилактики и терапии.

При облучении дозами 100-1000 рад в основе поражения лежит так называемый костномозговой механизм развития лучевой болезни. При общем или локальном облучении живота в дозах 1000-5000 рад - кишечный механизм развития лучевой болезни с превалированием токсемии

При остром облучении в дозах более 5000 рад развивается молниеносная форма лучевой болезни. Возможна смерть «под лучом» при облучении в дозах более 20 000 рад. При попадании в организм радионуклидов, происходит инкорпорирование радиоактивных веществ. Опасность инкорпорации определяется особенностями метаболизма, удельной активностью, путями поступления радионуклидов в организм. Наиболее опасны радионуклиды, имеющие большой период полураспада и плохо выводящиеся из организма, на пример радий-266, плутоний-239. На поражающий эффект влияет место депонирования радионуклидов: стронций-89 и стронций-90 - кости; цезий-137 - мышцы.

При авариях на ядерно-опасных объектах суммарную дозу облучения населения можно условно представить следующим образом:

Д = Д внешн (ом) +Д внешн (к) +Д внутр (ингал) +Д внутр (пища, вода),

Где Д внешн (ом) - доза внешнего облучения соответственно от радиоактивного облака и загрязненной местности;

Д внешн (к) - доза внешнего облучения от радиоактивной пыли, попавшей на кожные покровы человека;

Д внутр (ингал) - доза внутреннего облучения, полученная через органы дыхания (йод-131);

Д внутр (пища, вода) - доза внутреннего облучения, полученная с пищей и водой, загрязненными радионуклидами долгоживущих элементов (цезия, стронция, плутония).

3.ПОСЛЕДСТВИЯ АВАРИЙ НА РОО

Радиоактивное загрязнение окружающей среды является наиболее важным экологическим последствием радиационных аварий с выбросами радионуклидов, основным фактором, оказывающим влияние на состояние здоровья и условия жизнедеятельности людей на территориях, подвергшихся радиоактивному загрязнению. Основными специфическими явлениями и факторами, обусловливающими экологические последствия при радиационных авариях и катастрофах, служат радиоактивные излучения из зоны аварии, а также из формирующегося при аварии и распространяющегося в приземном слое облака (облаков) загрязненного радионуклидами воздуха; радиоактивное загрязнение компонентов окружающей среды.

Воздушные массы, двигавшиеся 26 апреля 1986 г. на запад, 27 апреля на север и северо-запад, 28–29 апреля от северного направления повернули на восток, юго-восток и далее 30 апреля юг (на Киев).

Последующее длительное поступление радионуклидов в атмосферу происходило за счет горения графита в активной зоне реактора. Основной выброс радиоактивных продуктов продолжался в течение 10 суток. Однако истечение радиоактивных веществ из разрушенного реактора и формирование зон загрязнения продолжались в течение месяца. Долгосрочный характер воздействия радионуклидов определялся значительным периодом полураспада. Осаждение радиоактивного облака и формирование следа происходили длительное время. В течение этого времени изменялись метеорологические условия и след радиоактивного облака приобрел сложную конфигурацию. Фактически сформировались два радиоактивных следа: западный и северный. Наиболее тяжелые радионуклиды распространялись на запад, а основная масса более легких (йод и цезий), поднявшись выше 500–600 м (до 1,5 км), была перенесена на северо-запад.

В результате аварии около 5% радиоактивных продуктов, накопившихся за 3 года работы в реакторе, вышли за пределы промышленной площадки станции. Летучие изотопы цезия (134 и 137) распространились на огромные расстояния (значительное количество по всей Европе) и были обнаружены в большинстве стран и океанах Северного полушария. Чернобыльская авария привела к радиоактивному загрязнению территорий 17 стран Европы общей площадью 207,5 тыс. км2, с площадью загрязнения цезием выше 1 Кю/км2.

Если выпадения по всей Европе принять за 100%, то из них на территорию России пришлось 30%, Белоруссии - 23%, Украины - 19%, Финляндии - 5%, Швеции - 4,5%, Норвегии - 3,1%. На территориях России, Белоруссии и Украины в качестве нижней границы зон радиоактивного загрязнения был принят уровень загрязнения 1 Кю/км2.

Сразу после аварии наибольшую опасность для населения представляли радиоактивные изотопы йода. Максимальное содержание йода-131 в молоке и растительности наблюдалось с 28 апреля по 9 мая 1986 г. Однако в этот период “йодовой опасности” защитные мероприятия почти не проводились.

В дальнейшем радиационную обстановку определяли долгоживущие радионуклиды. С июня 1986 г. радиационное воздействие формировалось в основном за счет радиоактивных изотопов цезия, а в некоторых районах Украины и Белоруссии также и стронция. Наиболее интенсивные выпадения цезия характерны для центральной 30-кило-метровый зоны вокруг Чернобыльской АЭС. Другая сильно загрязненная зона - это некоторые районы Гомельской и Могилевской областей Белоруссии и Брянской области России, которые расположены примерно в 200 км от АЭС. Еще одна, северо-восточная зона расположена в 500 км от АЭС, в нее входят некоторые районы Калужской, Тульской и Орловской областей. Из-за дождей выпадения цезия легли “пятнами”, поэтому даже на соседних территориях плотность загрязнения могла различаться в десятки раз. Осадки сыграли существенную роль в формировании выпадений - в зонах выпадения дождевых осадков загрязнение в 10 и более раз превышало выпадение в “сухих” местах. При этом в России выпадения были “размазаны” на достаточно большой территории, поэтому общая площадь территорий, загрязненных выше 1 Кю/км2, в России наибольшая. А в Белоруссии, где выпадения оказались более сконцентрированными, образовалась наибольшая по сравнению с другими странами площадь территорий, загрязненных свыше 40 Кю/км2. Плутоний-239 как тугоплавкий элемент не распространился в значительных количествах (превышающих допустимые значения в 0,1 Кю/км2) на большие расстояния. Его выпадения практически ограничились 30-километровой зоной. Однако эта зона площадью около 1 100 км2 (где и стронция-90 в большинстве случаев выпало более 10 Кю/км2) стала надолго непригодной для проживания человека и хозяйствования, так как период полураспада плутония-239 составляет 24,4 тыс. лет.

В России общая площадь радиоактивно загрязненных территорий с плотностью загрязнения выше 1 Кю/км2 по цезию-137 достигала 100 тыс. км2, а свыше 5 Кю/км2 - 30 тыс. км2. На загрязненных территориях оказалось 7 608 населенных пунктов, в которых проживало около 3 млн. человек. Вообще же радиоактивному загрязнению подверглись территории 16 областей и 3 республик России (Белгородской, Брянской, Воронежской, Калужской, Курской, Липецкой, Ленинградской, Нижегородской, Орловской, Пензенской, Рязанской, Саратовской, Смоленской, Тамбовской, Тульской, Ульяновской, Мордовии, Татарстана, Чувашии).

Радиоактивное загрязнение затронуло более 2 млн. га сельхозугодий и около 1 млн. га лесных земель. Территория с плотностью загрязнения 15 Кю/км2 по цезию-137, а также радиоактивные водоемы находятся только в Брянской области, в которой прогнозируется исчезновение загрязнения примерно через 100 лет после аварии. При распространении радионуклидов транспортирующей средой является воздух или вода, а роль концентрирующей и депонирующей среды выполняют почва и донные отложения. Территории радиоактивного загрязнения - это, главным образом, сельскохозяйственные районы. Это значит, что радионуклиды могут попасть с продуктами питания в организм человека. Радиоактивное загрязнение водоемов, как правило, представляет опасность лишь в первые месяцы после аварии. Наиболее доступны для усвоения растениями “свежие” радионуклиды при поступлении аэральным путем и в начальный период пребывания в почве (например, для цезия-137 заметно уменьшение поступления в растения с течением времени, т. е. при “старении” радионуклида).

Сельскохозяйственная продукция (прежде всего молоко) при отсутствии соответствующих запретов на ее употребление стала главным источником облучения населения радиоактивным йодом в первый месяц после аварии. Местные продукты питания вносили существенный вклад в дозы облучения и во все последующие годы. В настоящее время, спустя 20 лет, потребление продукции подсобных хозяйств и даров леса дает основной вклад в дозу облучения населения. Принято считать, что 85% суммарной прогнозируемой дозы внутреннего облучения на последующие 50 лет после аварии составляет доза внутреннего облучения, обусловленная потреблением продуктов питания, которые выращены на загрязненной территории, и лишь 15% падает на дозу внешнего облучения. В результате радиоактивного загрязнения компонентов окружающей среды происходят включение радионуклидов в биомассу, их биологическое накопление с последующим негативным воздействием на физиологию организмов, репродуктивные функции и т. д.

На любом этапе получения продукции и приготовления пищи можно уменьшить поступление радионуклидов в организм человека. Если тщательно мыть зелень, овощи, ягоды, грибы и другие продукты, радионуклиды не будут попадать в организм с частичками почвы. Эффективные пути уменьшения поступления цезия из почвы в растения - глубокая перепашка (делает цезий недоступным для корней растений); внесение минеральных удобрений (снижает переход цезия из почвы в растение); подбор выращиваемых культур (замена на виды, накапливающие цезий в меньшей степени). Уменьшить поступление цезия в продукты животноводства можно подбором кормовых культур и использованием специальных пищевых добавок. Сократить содержание цезия в продуктах питания можно различными способами их переработки и приготовления. Цезий растворим в воде, поэтому за счет вымачивания и варки его содержание уменьшается. Если овощи, мясо, рыбу варить 5–10 минут, то 30–60% цезия перейдет в отвар, который затем стоит слить. Квашение, маринование, соление снижает содержание цезия на 20%. То же относится и к грибам. Их очистка от остатков почвы и мха, вымачивание в солевом растворе и последующее кипячение в течение 30–45 минут с добавлением уксуса или лимонной кислоты (воду сменить 2–3 раза) позволяют снизить содержание цезия до 20 раз. У моркови и свеклы цезий накапливается в верхней части плода, если ее срезать на 10–15 мм, его содержание снизится в 15–20 раз. У капусты цезий сосредоточен в верхних листьях, удаление которых уменьшит его содержание до 40 раз. При переработке молока на сливки, творог, сметану содержание цезия снижается в 4–6 раз, на сыр, сливочное масло - в 8–10 раз, на топленое масло - в 90–100 раз.

Радиационная обстановка зависит не только от периода полураспада (для йода-131 - 8 дней, цезия-137 - 30 лет). Со временем радиоактивный цезий уходит в нижние слои почвы и становится менее доступным для растений. Одновременно снижается и мощность дозы над поверхностью земли. Скорость этих процессов оценивается эффективным периодом полураспада. Для цезия-137 он составляет около 25 лет в лесных экосистемах, 10–15 лет на лугах и пашнях, 5–8 лет в населенных пунктах. Поэтому радиационная обстановка улучшается быстрее, чем происходит естественный расход радиоактивных элементов. С течением времени плотность загрязнения на всех территориях уменьшается, а их общая площадь сокращается.

Радиационная обстановка также улучшалась в результате проведения защитных мероприятий. Для предотвращения разноса пыли асфальтировались дороги и накрывались колодцы; перекрывались крыши жилых домов и общественных зданий, где в результате выпадений скапливались радионуклиды; местами снимался почвенный покров; в сельском хозяйстве проводились специальные мероприятия для снижения загрязнения сельскохозяйственной продукции.

сточники

1. Хван Т.А., Хван П.А. Безопасность жизнедеятельности. Ростов Н /Д: «Феникс», 2003 г.

2. Арустамов Э.А. Безопасность жизнедеятельности. М.: «Торговая корпорация „Дашков и К“, 2005 г.

3. Сергеев В.С. Безопасность жизнедеятельности. Москва, 2004 г.

В настоящее время практически в любой отрасли хозяйства и науки во все более возрастающих масштабах используются радиоактивные ве­щества и источники ионизирующих излучений. Особенно высокими тем­пами развивается ядерная энергетика. Атомная наука и техника таят в себе огромные возможности, но вместе с тем и большую опасность для людей и окружающей среды, о чем свидетельствуют аварии на атомных станциях в США, Англии, Франции, Японии и в СССР (Чернобыльская). Атомные установки эксплуатируются на ледоколах и лихтеровозах, на крейсерах и подводных лодках, в космических аппаратах.

Ядерные материалы приходится возить, хранить, перерабатывать. Все эти операции создают дополнительный риск радиоактивного заг­рязнения окружающей среды, поражения людей, животных и расти­тельного мира.

Радиационно опасный объект (РОО) - предприятие, на котором при авариях могут произойти массовые радиационные поражения.

Радиационная авария - происшествие, приведшее к выходу (выбро­су) радиоактивных продуктов и ионизирующих излучений за предус­мотренные проектом пределы (границы) в количествах, превышающих установленные нормы безопасности.

Радиационные аварии подразделяются на три типа:

Локальная - нарушение в работе РОО, при котором не произошел выход радиоактивных продуктов или ионизирующих излучений за пред­усмотренные границы оборудования, технологических систем, зданий и сооружений в количествах, превышающих установленные для нор­мальной эксплуатации предприятия значения.

Местная - нарушение в работе РОО, при котором произошел вы­ход радиоактивных продуктов в пределах санитарно-защитной зоны и в количествах, превышающих установленные нормы для данного предприятия.

Общая - нарушение в работе РОО, при котором произошел выход радиоактивных продуктов за границу санитарно-защитной зоны и в количествах, приводящих к радиоактивному загрязнению прилегающей территории и возможному облучению проживающего на ней населения выше установленных норм.

К типовым радиационно опасным объектам следует отнести: атомные станции, предприятия по изготовлению ядерного топлива, по перера­ботке отработавшего топлива и захоронению радиоактивных отходов, научно-исследовательские и проектные организации, имеющие ядерные реакторы, ядерные энергетические установки на транспорте.

Классификация аварий на радиационно опасных объектах

Классификация производится с целью заблаговременной разработки мер, реализация которых в случае аварии должна уменьшить вероят­ные последствия и содействовать успешной ликвидации.

Классификация возможных аварий на АЭС и других радиационно опасных объектах проводится по двум признакам: во-первых, по ти­повым нарушениям нормальной эксплуатации и, во-вторых, по харак­теру последствий для персонала, населения и окружающей среды.

При анализе аварий их принято характеризовать цепочкой: исходное событие - пути протекания - последствия.

Аварии, связанные с нарушениями нормальной эксплуатации, под­разделяются на проектные, проектные с наибольшими последствиями и запроектные. При этом под нормальной эксплуатацией АЭС понима­ется все ее состояние в соответствии с принятой в проекте технологией производства энергии, включая работу на заданных уровнях мощнос­ти, процессы пуска и остановки, техническое обслуживание, ремонты, перегрузку ядерного топлива.

Причинами проектных аварий, как правило, являются исходные со­бытия, связанные с нарушением барьеров безопасности, предусмотрен­ные проектом каждого реактора. Именно в расчете на эти исходные со­бытия и строится система безопасности АЭС.

Первый тип аварии - нарушение первого барьера безопасности, а проще - нарушение герметичности оболочек твэлов (тепловыделяющих элемен­тов) из-за кризиса теплообмена или механических повреждений. Кризис теплообмена - это нарушение температурного режима (перегрев) твэлов.

Второй тип - нарушение первого и второго барьеров безопасности. При попадании радиоактивных продуктов в теплоноситель вследствие нару­шения первого барьера дальнейшее их распространение останавливает­ся вторым, который образует корпус реактора.

Третий тип - нарушение всех трех барьеров безопасности. При нарушен­ных первом и втором теплоноситель с радиоактивными продуктами деле­ния удерживается от выхода в окружающую среду третьим барьером - за­щитной оболочкой реактора. Под ней понимается совокупность всех кон­струкций, систем и устройств, которые должны с высокой степенью надеж­ности обеспечить локализацию выбросов.

Причиной ядерной аварии может быть также образование критичес­кой массы при перегрузке, транспортировке и хранении твэлов.

В тяжелых случаях нарушения контроля и управления цепной ядер­ной реакцией могут произойти тепловые и ядерные взрывы. Тепловой может возникнуть тогда, когда вследствие быстрого неуправляемого развития реакции резко нарастает мощность и происходит накопление энергии, приводящей к разрушению реактора со взрывом.

Радиационное воздействие на персонал и население в зоне радиоак­тивного загрязнения характеризуется величинами доз внешнего и внут­реннего облучения людей. Под внешним понимается прямое облучение человека от источников ионизирующего излучения, расположенных вне его тела, главным образом от источников гамма-излучения и нейтронов. Внутреннее облучение происходит за счет ионизирующего излучения от источников, находящихся внутри человека. Эти источники образуются в критических (наиболее чувствительных) органах и тканях. Внутрен­нее облучение происходит за счет источников альфа-, бета- и гамма-из­лучения.

Для лучшей организации защиты персонала и населения производит­ся заблаговременное зонирование территории вокруг радиационно опас­ных объектов. Устанавливаются следующие три зоны:

зона экстренных мер защиты - это территория, на которой доза облу­чения всего тела за время формирования радиоактивного следа или доза внутреннего облучения отдельных органов может превысить верхний предел, установленный для эвакуации;

зона предупредительных мероприятий - это территория, на которой доза облучения всего тела за время формирования радиоактивного следа или доза облучения внутренних органов может превысить верхний предел, ус­тановленный для укрытия и йодной профилактики;

зона ограничений - это территория, на которой доза облучения всего тела или отдельных его органов за год может повысить нижний предел для потребления пищевых продуктов. Зона вводится по решению госу­дарственных органов.

5 декабря 1995 г. Государственной Думой принят Федеральный закон «О радиационной безопасности населения», который устанавливает го­сударственное нормирование в сфере обеспечения радиационной безо­пасности. Статья 9 определяет пределы дозовых нагрузок для населе­ния и персонала, причем более жесткие, нежели ныне действующие. II в этом смысле мы идем впереди всех стран: мы принимаем дозовые пре­делы, которые рекомендованы в 1990 г. Международной комиссией по радиационной защите.

Эти нормы вводятся в действие с 1 января 2000 г. Пока еще ни одна страна в мире не перешла на рекомендованные дозовые пределы, хотя в экономическом отношении они не сравнимы с нами.

Устанавливаются следующие основные гигиенические нормативы (до­пустимые пределы доз) облучения на территории России в результате использования источников ионизирующего излучения:

для населения средняя годовая эффективная доза равна 0,001 зиверта (1 мЗв) или эффективная доза за период жизни (70 лет) - 0,07 зиверта (70 мЗв);

для работников средняя годовая эффективная доза равна 0,02 зиверта (20 мЗв) или эффективная доза за период трудовой деятельности (50 лет) - 1 зиверту (1000 мЗв).

Регламентируемые значения основных пределов доз облучения не включают в себя дозы, создаваемые естественным радиационным и тех-ногенно измененным радиационным фоном, а также дозы, получаемые гражданами при проведении медицинских рентгенорадиологических процедур и лечения.

В случае радиационных аварий допускается облучение, превыша­ющее установленные нормы, в течение определенного промежутка времени и в пределах, определенных для таких ситуаций.

В настоящее время практически в любой отрасли народного хозяйства и науки во все более возрастающих масштабах используются радиоактивные вещества и источники ионизирующих излучений. Особенно высокими темпами развивается ядерная энергетика. Атомная наука и техника таят в себе огромные возможности, но вместе с тем и большую опасность для людей и окружающей среды.

Ядерные материалы приходится возить, хранить, перерабатывать, что создает дополнительный риск радиоактивного загрязнения окружающей среды, поражения людей, животных и растительного мира.

Среди техногенных источников ЧС наибольшую опасность по тяжести поражения, масштабам и долговременности действия поражающих факторов представляют именно радиационные катастрофы. В обычных условиях радиационная обстановка в стране определяется:

во-первых, природной радиоактивностью, включая космические излучения;

во-вторых, радиоактивным фоном обусловленным проведенными испытаниями ядерного оружия (с 1945 по 1991 г. не менее 1900 испытаний) ;

в-третьих, наличием территорий, загрязненных радиоактивными веществами вследствие произошедших в предыдущие годы аварий на предприятиях атомной промышленности и энергетики;

в-четвертых, эксплуатацией радиационно-опасных объектов.

Радиационно-опасный объект (РОО) - объект, на котором хранят, перерабатывают, используют или транспортируют радиоактивные вещества, при аварии на котором или его разрушении может произойти облучение ионизирующим излучением или радиоактивное загрязнение людей, сельскохозяйственных животных и растений, объектов экономики, а также окружающей природной среды.

К типовым РОО относятся:

Атомные станции;

Предприятия по переработке отработанного ядерного топлива и захоронению радиоактивных отходов;

Предприятия по изготовлению ядерного топлива;

НИИ и проектные организации, имеющие ядерные установки и стенды;

Транспортные ядерные энергетические установки;

Военные объекты.

Потенциальная опасность РОО определяется количеством радиоактивных веществ, которое может поступить в окружающую среду в результате аварии.

В Российской Федерации имеются около 250 судов с ядерными энергетическими установками. В пунктах отстоя в ожидании утилизации находятся 185 атомных подводных лодок, причем, 120 из них с 200 ядерными реакторами стоят с не выгруженным ядерным топливом. Кроме того, 70% АПЛ стратегического назначения нуждаются в ремонте, 50% технически и морально устарели, будут выведены из строя к 2015 году. Из оставшихся 75% будут потеряны из-за окончания гарантийного срока корабельных комплексов.

Потенциальную радиационную угрозу представляют 30 НИИ со 113 исследовательскими ядерными установками. 50 таких реакторов находятся в Московской области, а 9 из них непосредственно в Москве.

К радиационно-опасным объектам относятся и 16 региональных спецкомбинатов «Радон» по переработке, транспортировке и захоронению отходов. Пункты захоронения радиоактивных отходов (ПЗРО) специальных комбинатов «Радон» расположены рядом с городами Москва, Санкт-Петербург, Волгоград, Нижний Новгород, Грозный, Иркутск, Казань, Самара, Мурманск, Новосибирск, Ростов-на-Дону, Саратов, Екатеринбург, Благовещенск республики Башкортостан, Челябинск и Хабаровск.

Особое место среди РОО занимают атомные электростанции (АЭС), атомные теплоэлектроцентрали (АТЭЦ), атомные станции теплоснабжения (ACT) и атомные станции промышленного теплоснабжения (АСПТ).

Атомные станции теплоснабжения существуют только в России (3 станции). Лидером по выработке электроэнергии атомными электростанциями являются США (836,63млрд кВт·ч/год), Франция (436 млрд. кВт.ч/год).

В Российской Федерации работают 10 атомных электростанций (в их числе Ростовская АЭС), которые производят около 160 млрд. кВт.ч/год.

Преимуществами атомных электростанций перед тепловыми являются их экологическая чистота, практическая независимость от источников топлива (цикл зарядки - 3 года), более низкая себестоимость производимой электроэнергии.

Главными недостатками АЭС, по мнению специалистов, являются:

тяжелые последствия аварий, для исключения которых АЭС оборудуются сложнейшими системами безопасности с многократными запасами и резервированием, обеспечивающими исключение расплавления активной зоны даже в случае максимальной проектной аварии;

высокая стоимость утилизации ядерных отходов, появляющихся в результате эксплуатации АЭС, а также утилизация самих АЭС после окончания срока эксплуатации. Основным и наиболее опасным элементом атомных станций является ядерный реактор. На атомных электростанциях наиболее широко распространены корпусные водо-водяные энергетические реакторы ВВЭР (теплоноситель и замедлитель нейтронов - вода) и водографитные реакторы канального типа РБМК - реактор большой мощности, канальный (теплоноситель- вода, замедлитель- графит).

В активной зоне реактора, где размещены тепловыделяющие элементы (ТВЭЛ), происходит реакция деления ядер урана-235. В результате торможения осколков деления их кинетическая энергия преобразуется в тепловую и нагревает реактор.

Во время реакции в ТВЭЛ накапливаются радиоактивные продукты ядерного деления. Их качественный состав примерно тот же, что и осколков деления при взрывах ядерных боеприпасов, но количество радионуклидов по периоду полураспада существенно отличается.

Процесс деления в ТВЭЛ длится несколько лет, поскольку загрузка реакторов ядерным горючим осуществляется, как правило, не чаще одного раза в три года. За этот срок короткоживущие изотопы распадаются. Одновременно идет накопление радионуклидов с большим периодом полураспада (стронций Sr-90, цезий Cs-137, а также плутоний Ри-239 (-240,-241,-242).

В ходе трехгодичного периода эксплуатации реактора процентное содержание долгоживущих радионуклидов (стронций - 90, цезий -137, плутоний -239 (-240, -241, -242) в продуктах ядерного деления увеличивается. В случае радиационной аварии долгоживущие радионуклиды создают устойчивое радиоактивное загрязнение местности. Несмотря на принимаемые технические и организационные меры, полностью избежать аварий на радиационно-опасных объектах, и прежде всего на АЭС, пока не удается.

Эксплуатация радиационно-опасных объектов неизбежно сопровождается появлением потенциальных опасностей как для обслуживающего эти объекты персонала, так и для населения и окружающей природной среды. Реализация этих опасностей осуществляется при возникновении радиационных аварий на объекте.

Радиационная авария (РА) - авария на радиационно-опасном объекте, приводящая к выходу или выбросу радиоактивных веществ или ионизирующих излучений за границы объекта.

Радиационная авария присуща не только АЭС, но и всем предприятиям ядерного топливного цикла, а также предприятиям, использующим радиоактивные вещества. К таким предприятиям можно отнести предприятия, добывающие урановую или ториевую руду; заводы по переработке руды; обогатительные заводы, заводы по изготовлению ядерного топлива; хранилища РВ и многие другие. Радиационные аварии могут возникнуть в процессе испытаний, хранения, транспортировки ядерного оружия. Тем не менее, особенность расположения АЭС (в густонаселенных районах), количество имеющихся на них ядерного топлива и ядерных отходов предопределяют особую актуальность рассмотрения радиационных аварий именно на АЭС.

Аварии на атомных станциях подразделяются на проектные и запроектные (гипотетические). Система технической безопасности АЭС, как правило, обеспечивает локализацию максимальной проектной аварии (МПА), но не позволяет избежать гипотетических аварий. Об этом свидетельствуют данные МАГАТЭ.

Радиационные аварии на РОО подразделяются на три типа:

Локальная - нарушение в работе РОО, при котором не произошел выход радиоактивных продуктов или ионизирующего излучения за предусмотренные границы оборудования, технологических систем, зданий и сооружений в количествах, превышающих установленные для нормальной эксплуатации предприятия значения.

Местная - нарушение в работе РОО, при котором произошел выход радиоактивных продуктов в пределах санитарно - защитной зоны и количествах, превышающих установленные нормы для данного предприятия.

Общая - нарушение в работе РОО, при котором произошел выход радиоактивных продуктов за границу санитарно - защитной зоны и количествах, приводящих к радиоактивному загрязнению прилегающей территории и возможному облучению проживающего на ней населения выше установленных норм.

Отметим, что ядерного взрыва при авариях на АЭС не может быть в принципе, а ударная волна, образующаяся при тепловом взрыве реактора, распространяется на незначительные расстояния и представляет опасность только для обслуживающего станцию персонала и конструкций объектов АЭС.

Основным поражающим фактором (опасностью) при авариях на реакторах АЭС, как и других РОО (кроме арсеналов для хранения ядерных боеприпасов), является радиоактивное загрязнение местности.

Источником загрязнения является атомный реактор как мощный источник накопленных радиоактивных веществ.

Хотя количество радионуклидов в активной зоне реактора велико, реальную опасность при аварии представляют только выброшенные из реактора радионуклиды. Доля выброса радионуклидов зависит от многих факторов, включая конструкцию реактора, состояние активной зоны, историю аварийного процесса и многое другое.

Поскольку период полураспада основных продуктов деления, вызывающих радиоактивное загрязнение внешней среды сравнительно велик (исключение составляет йод -131), такого резкого уменьшения мощности дозы, как это имеет место на следе ядерного взрыва, не наблюдается, т.е. спад уровней радиации на местности более медленный, чем после ядерного взрыва.

При авариях на АЭС значительная часть продуктов деления ядерного топлива находится в парообразном или аэрозольном состоянии. Воздействие радиоактивного загрязнения окружающей среды на людей в первые часы и сутки после аварии определяется внутренним облучением в результате вдыхания радионуклидов из облака и внешним облучением от радиоактивного облака и радиоактивных выпадений на местности, а также поверхностным загрязнением в результате осаждения радионуклидов из облака выброса. В последующем, в течение многих лет, вредное воздействие и накопление дозы облучения у людей будет обусловлено вовлечением в биологическую цепочку выпавших радионуклидов и употреблением загрязненных продуктов питания и воды.

При аварии на Чернобыльской АЭС в 1986 году выброс в атмосферу парообразных или арозольных радионуклидов продолжался в течение 10 суток. Метеорологическая обстановка в этот период характеризовалась неустойчивым ветром как в приземном слое, так и на высоте 700-1500 м. Направление ветра изменялось в пределах 360 градусов, фактически описав круг. Поэтому конфигурация следа имеет очень сложную форму и даже «пятнистый» характер («цезиевые пятна»).

Для характеристики радиоактивного заражения территории, оценки радиационной обстановки и определения мер радиационной защиты при ликвидации последствий при гипотетической, запроектной и др. авариях на АЭС условно на местности выделяют зоны радиоактивного заражения (загрязнения) (РЗ), которые на картах изображают в виде эллипсов умеренного (зона А), сильного (зона Б), опасного (зона В), чрезвычайно опасного (зона Г) и зона радиационной опасности (зона М).

При этом, внешние границы зон PЗ принято характеризовать параметрами: поглощенная доза излучения за 1-ый год; мощность поглощенной дозы излучения за 1 час после аварии, катастрофы. Значения этих радиационных характеристик зон РЗ приведены ниже и отличаются от зон РЗ при ядерном взрыве. Данные зоны РЗ и их характеристики используются при оценке радиационной обстановки методом прогнозирования, т.е. заблаговременно. Реальная же конфигурация следа заражения, определенная при радиационной разведке, будет иметь сложную форму.

После определения границ зон радиоактивного заражения, устанавливают границы территорий, имеющих различную степень опасности для здоровья людей. Они характеризуются возможной дозой облучения.

Зона экстренных мер защиты населения - территория, в пределах которой доза внешнего гамма -облучения населения за время формирования следа радиоактивного загрязнения от выброса РВ при аварии на РОО может превысить 75 рад, а доза внутреннего облучения щитовидной железы за счет поступления в организм человека радиоактивного йода - 250 рад.

Таблица 1. Характеристики зон радиоактивного заражения (РЗ) местности при аварии на АЭС

Зона профилактических мероприятий - территория, в пределах которой доза внешнего гамма -облучения населения за время формирования следа радиоактивного загрязнения от выброса РВ при аварии на РОО может превысить 25 рад (но не более 75), а доза внутреннего облучения щитовидной железы радиоактивным йодом может превысить 30 рад (но не более 250).

Зона ограничений - территория, в пределах которой доза внешнего облучения населения за время формирования следа радиоактивного загрязнения от выброса РВ при аварии на РОО может превысить 10 рад (но не более 25), а доза внутреннего облучения щитовидной железы радиоактивным йодом не превышает 30 рад.

Зона возможного радиоактивного загрязнения - территория, в пределах которой прогнозируются дозовые нагрузки, превышающие 10 рад в год.

При аварии, повлекшей за собой радиоактивное загрязнение обширной территории, на основании контроля и прогноза радиационной обстановки устанавливается зона радиационной аварии (ЗРА).

Зона радиационной аварии - это территория, на которой суммарное внешнее и внутреннее облучение может превышать 5 рад за первый год. В ЗРА проводится мониторинг радиационной обстановки и осуществляются мероприятия по снижению уровней облучения населения на основе принципа оптимизации (т.е. выбора наилучшего варианта действий).

На территории, подвергшейся радиоактивному загрязнению, после стабилизации обстановки в районе аварии в период ликвидации ее долговременных последствий для жизни и хозяйственной деятельности населения устанавливаются зоны:

Зона отчуждения. В этой зоне запрещается постоянное проживание населения, ограничивается хозяйственная деятельность и природопользование;

Зона отселения. Это территория за пределами зоны отчуждения, на которой плотность загрязнения почв цезием-137 от 15 до 40 Ки/км 2 или эквивалентных доз других радионуклидов, население подлежит обязательному отселению.

Зона проживания с правом на отселение. Это территория за пределами зоны отчуждения и зоны отселения с плотностью загрязнения почв цезием - 137 от 5 до 15 Ки/км 2, при которой население имеет право на отселение;

Зона проживания с льготным социально-экономическим статусом. Это территория за пределами зоны отчуждения, зоны отселения и зоны проживания с правом на отселение с плотностью радиоактивного загрязнения почвы цезием - 137 от 1 до 5 Ки/км 2 .

Для защиты работающего на АЭС персонала и населения на территории вокруг станции c момента начала ее эксплуатации устанавливаются санитарная зона и зона наблюдения.

Вокруг АЭС создается санитарная зона R= 3 км., которая подразделяется на 3 зоны:

1. Зона строгого режима с предельно допустимой дозой (ПДД) = 5 бэр/год. В ней предусматривается постоянный радиационный контроль в местах работ людей, повседневный радиационный контроль объектов и территории.

2. Зона режима радиационной безопасности с ПДД = 0.5 бэр/год в которой проводится повседневное радиометрическое обследование людей, транспорта и путей их движения после проведения работ.

3. Санитарно - защитная зона. В ней предусматривается систематическое измерение уровней ионизирующих излучений и радиоактивного заражения.

Кроме того, устанавливается зона наблюдения R= 30 км., в которой проводится контроль за радиоактивностью объектов и внешней среды с установленной периодичностью.

Федеральный закон № 3-ФЗ от 09.01.1996 «О радиационной безопасности населения» устанавливает государственное нормирование в сфере обеспечения радиационной безопасности. Статья 9 определяет пределы дозовых нагрузок для населения и персонала, причем более жесткие, чем ранее действующие. Эти нормы периодически пересматриваются в сторону ужесточения и с сентября 2009 года Постановлением Роспотребнадзора (Главного санитарного врача России) от 7 июля 2009 года № 47 введены «Нормы радиационной безопасности НРБ-99/2009».

Эти нормы распространяются на следующие виды воздействия ионизирующего излучения на человека:

Облучения персонала и населения в условиях нормальной эксплуатации техногенных источников ионизирующего излучения (ИИИ);

Облучение населения и персонала в условиях радиационной аварии;

Облучение работников промышленных предприятий и населения всеми природными ИИИ;

Медицинское облучение населения.

Важнейшим условием сохранения работоспособности и здоровья населения является соблюдение принципа непревышения допустимых пределов индивидуальных доз облучения (в условиях военного времени применяется термин «дозы, не приводящие к потере работоспособности», в условиях мирного времени - «основные пределы доз»).

Работоспособность в военное время определяется как возможность личного состава нештатных аварийно-спасательных формирований, рабочих и служащих выполнять свои профессиональные обязанности в течение определенного времени после внешнего облучения.

Дозы, не приводящие к потере работоспособности (военное время):

Однократная (в течении первых 4-х суток) - до 50 рад

Многократная (в течении 10 - 30 суток) - до 100 рад.

Многократная (в течении 1 года) - до 300 рад.

Превышение указанных значений доз приводит к уменьшению (потере) работоспособности или (и) к лучевой болезни.

Основные пределы доз (мирное время):

для населения средняя годовая эффективная доза равна 0.001 зиверта (1 мЗв) или эффективная доза за период жизни (70 лет) - 0.07 зиверта (70 мЗв);

для работников РОО средняя годовая эффективная доза равна 0.02 зиверта (20 мЗв) или эффективная доза за период трудовой деятельности (50 лет) - 1 зиверту (1 000 мЗв). Допустимо облучение в годовой эффективной дозе до 0.05 зиверта, но при условии, что она, исчисленная за пять последовательных лет, не превысит 0.02 зиверта.

Регламентируемые значения основных пределов доз облучения не включают в себя дозы, создаваемые естественным и искусственным радиационным фоном, а также дозы, получаемые гражданами при проведении медицинских рентгенорадиологических процедур и лечения.

В условиях радиационной аварии приведенные основные пределы доз не применяются, а устанавливается зона радиационной аварии и проводятся мероприятия по снижению уровней облучения населения (противорадиационного вмешательства). В случае радиационных аварий допускается облучение, превышающее установленные нормы, в течение определенного промежутка времени и в пределах, определенных для таких чрезвычайных ситуаций.

В настоящее время в нашей стране на многих объектах экономики, военных объектах, в научных центрах и на других предприятиях используются радиоактивные вещества. Отдельные системы, блоки и устройства этих объектов преобразуют энергию, получаемую в результате деления ядер урана и некоторых других тяжелых элементов, в электрическую и другие виды энергии (тепловую, механическую). Ряд предприятий используют радиоактивные вещества в технологических процессах или хранят их на своей территории. В России в настоящее время имеется 10 атомных электростанций (30 энергоблоков), 113 исследовательских ядерных установок, 12 промышленных предприятий топливного цикла, 9 атомных судов с объектами их обеспечения, а также 13 тыс. других предприятий и организаций, осуществляющих свою деятельность с использованием радиоактивных веществ и изделий на их основе. Все эти предприятия относятся к объектам с ядерными компонентами, но радиационно опасными из них являются не все. ЗАПОМНИТЕ!

Ионизирующее излучение создается при радиоактивном распаде, ядерных превращениях, торможении заряженных частиц в веществе и образует при взаимодействии со средой ионы разных знаков. Радиационно опасный объект - это объект, на котором хранят, перерабатывают или транспортируют радиоактивные вещества, при аварии на котором или при его разрушении может произойти облучение ионизирующим излучением людей или радиоактивное загрязнение окружающей среды. Под радиоактивным загрязнением окружающей среды понимается присутствие радиоактивных веществ на поверхности местности, в воздухе, в теле человека в количестве, превышающем уровни, установленные нормами радиационной безопасности.

ЭТО ДОЛЖЕН ЗНАТЬ КАЖДЫЙ К радиационно опасным объектам относятся: предприятия ядерного топливного цикла (предприятия урановой и радиохимической промышленности, места переработки и захоронения радиоактивных отходов); атомные станции (атомные электрические станции (АЭС), атомные теплоэлектроцентрали (АТЭЦ), атомные станции теплоснабжения (АТС); объекты с ядерными энергетическими установками (корабельными, космическими и войсковыми атомными электростанциями); ядерные боеприпасы и склады для их хранения. Предприятия ядерного топливного цикла осуществляют добычу урановой руды, ее обогащение, изготовление топливных элементов для ядерных энергетических реакторов, переработку радиоактивных отходов, их хранение и окончательное размещение (захоронение). Наиболее характерным последствием аварий на предприятиях ядерного топливного цикла (возгорание горючих компонентов и радиоактивных материалов, появление течей и разрывов в резервуарах-хранилищах и др.) является выброс радиоактивных веществ в окружающую среду, который приведет к облучению людей выше установленных норм или к радиоактивному загрязнению окружающей среды. Атомная электростанция (АЭС) - это электростанция, на которой ядерная энергия преобразуется в электрическую. На АЭС тепло, выделяющееся в ядерном реакторе, используется для получения водяного пара, вращающего турбогенератор. Основными причинами аварий на АЭС могут быть нарушение технологической дисциплины оперативным персоналом станции и недостатки в его профессиональной подготовке, т. е. «человеческий фактор». Объекты с ядерными энергетическими установками делятся на корабельные объекты, войсковые атомные электростанции, космические ядерные электроустановки. Причинами аварий на этих установках могут служить разгерметизация первого контура реактора (первый контур находится внутри корпуса реактора) или механические повреждения реактора. Ядерные боеприпасы и взрывное устройство к ним в мирное время хранятся на складах в готовности к выдаче и боевому применению. Причинами возникновения аварийной ситуации с ядерными боеприпасами могут быть столкновение и опрокидывание транспортных средств при их транспортировке, пожары в сборочных помещениях и хранилищах. Максимальную опасность для населения и окружающей среды представляют аварии на атомных станциях.

ВНИМАНИЕ! Лучевая болезнь возникает при воздействии на организм ионизирующих излучений в дозах, превышающих предельно допустимы. В настоящее время хорошо изучены последствия однократного облучения человека и выделено несколько степеней лучевого поражения. Последствия однократного общего облучения Острая лучевая болезнь легкой (I) степени развивается при кратковременном облучении всего тела в дозе, превышающей 100 бэр. Она сопровождается головокружением, редко - тошнотой, отмечается через 2-3 ч после облучения. Острая лучевая болезнь средней (II) степени развивается при воздействии ионизирующего излучения в дозе от 200 до 400 бэр. Первичная реакция (головная боль, тошнота, иногда рвота) возникает через 1-2 ч. Острая лучевая болезнь тяжелой (III) степени наблюдается при воздействии ионизирующего излучения в дозе 400-600 бэр. Первичная реакция возникает через 30-60 мин и резко выражена (повторная рвота, повышение температуры тела, головная боль). Острая лучевая болезнь крайне тяжелой (IV) степени отмечается при воздействии ионизирующего излучения в дозе более 600 бэр. Симптомы обусловлены глубоким поражением кроветворной системы, приобретают первостепенное значение поражения других органов (кишечника, кожи, головного мозга) и интоксикация (состояние организма, вызванное воздействием токсических веществ). Смертельные исходы практически неизбежны. Необходимо отметить, что при хроническом облучении потоками излучения малой дозы суммарные дозы могут быть большими. Наносимые организму повреждения частично могут восстанавливаться. Поэтому доза более 50 бэр, приводящая при однократном воздействии к болезненным явлениям, при хроническом облучении, растянутом, к примеру, на 10 лет, к тяжелым отклонениям в здоровье человека может не привести. Эти обстоятельства позволяют установить допустимые уровни облучения. Для того чтобы можно было количественно определить степень воздействия облучения на организм, было введено понятие эквивалентной дозы облучения, которую связывают со степенью ионизации вещества. Доза измеряется энергией ионизирующего излучения, переданного массе облучаемого вещества. В системе СИ единицей эквивалентной дозы служит зиверт (Зв). 1 Зв = 100 бэр. (Заметим, что понятие дозы всегда определяется по отношению к единице массы или объема вещества.) Без ядерной энергетики человечеству, вероятно, не обойтись. Поэтому в настоящее время проводятся интенсивные исследования с целью повышения безопасности реакторов АЭС, усиления средств их защиты, в том числе и от ошибочных действий обслуживающего персонала, принимаются меры повышения уровня общей культуры в области безопасности у населения, проживающего в зонах АЭС. Обеспечение радиационной безопасности населения.

ЭТО ДОЛЖЕН ЗНАТЬ КАЖДЫЙ В целях обеспечения радиационной защиты населения нашей страны в 1995 г. был принят Федеральный закон «О радиационной безопасности населения», в котором определилась политика государства в области радиационной безопасности населения в целях охраны его здоровья. В законе определены основные понятия, имеющие отношение к радиационной безопасности, которые необходимо знать, так как они касаются личной безопасности каждого. Приведем их: радиационная безопасность населения - это состояние защищенности настоящего и будущего поколений людей от вредного для их здоровья воздействия ионизирующего облучения; естественный радиационный фон - это доза излучения, создаваемая космическим излучением и излучением природных радионуклидов, естественно распределенных в земле, воде, воздухе, других элементах биосферы, пищевых продуктах и организме человека; техногенно измененный радиационный фон - это естественный радиационный фон, измененный в результате деятельности человека; эффективная доза - это величина воздействия ионизирующего излучения, используемая как мера риска возникновения отдельных последствий облучения организма человека и отдельных его органов с учетом их радиочувствительности; санитарно-защитная зона - это территория вокруг источника ионизирующего излучения, на которой уровень облучения людей в условиях нормальной эксплуатации данного источника может превысить установленный предел дозы для населения. В санитарно-защитной зоне запрещается постоянное и временное проживание людей, вводится режим ограничения хозяйственной деятельности и проводится радиационный контроль; зона наблюдения - это территория за пределами санитарно-защитной зоны, на которой проводится радиационный контроль; радиационная авария - это потеря управления источником ионизирующего излучения, вызванная неисправностью оборудования, неисправными действиями работников (персонала), стихийными бедствиями или иными причинами, которые могли привести или привели к облучению людей выше установленных норм или к радиоактивному загрязнению окружающей среды. Нормами предусмотрено, что для населения средняя годовая эффективная доза равна 0,001 зиверта (0,1 бэр), или эффективная доза за период жизни (70 лет) - 0,07 зиверта (7 бэр). Для персонала ядерных объектов принята средняя годовая эффективная доза 0,02 зиверта (2 бэр), или эффективная доза за период трудовой деятельности (50 лет) - 1 зиверт (100 бэр). В законе также указано, что регламентируемые значения основных пределов доз облучения не включают в себя дозы, создаваемые естественным радиационным фоном, а также дозы, получаемые гражданами при проведении медицинских рентгенорадиологических процедур и лечения. Указанные значения пределов доз облучения являются исходными при установлении допустимых уровней облучения организма человека и отдельных его органов. Мы живем в радиоактивном мире, так как живем на радиоактивной Земле. Все естественные источники излучений создают естественный радиационный фон, в котором мы рождаемся и живем на протяжении всей нашей жизни. К этому фону наш организм адаптировался. Общая эквивалентная доза от естественного облучения в среднем достигает примерно 0,002 Зв в год (0,2 бэр/ч). Радон - самый главный из всех естественных источников радиации. Этот газ без цвета, вкуса и запаха - один из продуктов распада урана-238. Он достаточно тяжелый (в 7,5 раза тяжелее воздуха). Главный источник поступления радона - грунт. Радон выделяется в основном из геологических разломов и шахт, но может содержаться в материале стен и даже питьевой воде. Добавку к естественному радиационному фону вносят техногенные источники, в том числе и радиационно опасные объекты.

ВНИМАНИЕ! В сумме эффекты от всех естественных и искусственных источников излучений в настоящее время в среднем составляют 0,25 бэр в год. Следовательно, все люди на Земле получают в среднем по 0,25 бэр в год. Это и принято за начальную точку отсчета при установлении допустимых уровней облучения организма человека.

ЭТО ДОЛЖЕН ЗНАТЬ КАЖДЫЙ Для обеспечения радиационной безопасности населения специалистами МЧС России разработаны рекомендации по правилам поведения населения, проживающего в непосредственной близости от радиационно опасных объектов.

1. При проживании в непосредственной близости от радиационно опасных объектов необходимо: уточнить наличие в районе вашего проживания радиационно опасных объектов и получить возможно более подробную и достоверную информацию о них; выяснить в ближайшем территориальном управлении ГО ЧС способы и средства оповещения населения при аварии на радиационно опасном объекте; изучить инструкцию о порядке действий населения в случае возникновения радиационной аварии; создать и иметь определенные запасы необходимых герметизирующих материалов, йодных препаратов, продовольствия и воды.

2. При получении сигнала оповещения о радиационной аварии Если вы находитесь на улице, немедленно защитите органы дыхания платком, шарфом и укройтесь в ближайшем здании, лучше в собственной квартире. Войдя в помещение, в коридоре следует снять с себя верхнюю одежду и обувь, поместить их в пластиковый пакет или пленку. Если вы находитесь в своем доме (квартире), немедленно закройте окна, двери, вентиляционные отверстия, включите радиоприемник или телевизор и будьте готовы к приему информации о дальнейших действиях. Обязательно загерметизируйте помещение и укройте продукты питания. Подручными средствами заделайте щели на окнах и дверях, заклейте вентиляционные отверстия. Открытые продукты поместите в полиэтиленовые мешки, пакеты или пленку. Продукты и воду поместите в холодильник или в закрываемые шкафы. При получении указаний через СМИ проведите йодную профилактику, принимая в течение 7 дней по одной таблетке (0,125 г) йодистого калия, а для детей до 2 лет ’/4 таблетки (0,04 г). При отсутствии йодистого калия можно использовать йодистый раствор: три-пять капель 5%-ного раствора йода на стакан воды, детям до 2 лет одну-две капли на 100 г воды. При приготовлении и приеме пищи все продукты, выдерживающие воздействие воды, промывайте струей воды. Строго соблюдайте правила личной гигиены, предотвращающие или значительно снижающие внутреннее облучение организма. Помещение оставляйте лишь в крайней необходимости и на короткое время. При выходе из помещения защитите органы дыхания, наденьте плащ, или накидку, или табельные средства защиты кожи. После возвращения переоденьтесь.

3. При подготовке к возможной эвакуации Подготовка к возможной эвакуации заключается в сборе самых необходимых вещей. Это документы, деньги, личные вещи, продукты, средства индивидуальной защиты, в том числе подручные - накидки, плащи, резиновые сапоги, перчатки и т. д. Необходимо сложить в чемодан и рюкзак одежду и обувь по сезону, однодневный запас продуктов, нижнее белье и другие необходимые вещи. Оберните чемодан (рюкзак) полиэтиленовой пленкой. Покидая при эвакуации квартиру, отключите все электро- и газовые приборы, вынесите в мусоросборник быстро портящиеся продукты, а на дверь прикрепите объявление «В квартире №___никого нет». При посадке в транспорт или при формировании пешей колонны, зарегистрируйтесь у председателя эвакокомиссии. Прибыв в безопасный район, примите душ и смените белье и обувь на незараженные.

4. Правила поведения при проживании на радиационно загрязненной местности При проживании на местности, степень радиационного загрязнения которой превышает фоновые нормы, но не выше опасных пределов установленных доз, необходимо придерживаться специального режима поведения, соблюдение которого в определенной степени может снизить риск дополнительного облучения.

Уборка помещения должна проводиться влажным способом с тщательным стиранием пыли с мебели и подоконников. Ковры, половики и другие тканевые покрытия не целесообразно вытряхивать, лучше чистить их влажной тряпкой или пылесосом.

Обувь, в которой ходили по улице, желательно ополаскивать водой (особенно подошву), затем протирать влажной тряпкой и оставлять ее за порогом квартиры (дома). Желательно, при наличии условий, оставлять вне квартиры (дома) и верхнюю одежду, в которой ходили по улице. М

усор из пылесоса и использованную при уборке ветошь необходимо сбрасывать в емкость, врытую в землю.

Территория двора должна периодически увлажняться.

При ведении приусадебного хозяйства для снижения радиоактивного загрязнения выращиваемых продуктов в почву целесообразно вносить известь, калийные удобрения и торф. Во время уборки урожая плоды, овощи и корнеплоды не складируют на землю.

Выращенные сельхозпродукты подвергаются радиационному контролю.

При установлении их загрязненности они промываются. Не рекомендуется употреблять в пищу рыбу и раков из местных водоемов, особенно мелких.

Заготовка дикорастущих ягод, грибов, лекарственных трав может проводиться по разрешению местных властей на территориях, определяемых по результатам проводимого радиационного контроля.

На открытой местности не раздевайтесь, не садитесь на землю и не курите; не купайтесь в открытых водоемах.

Воду употребляйте только из проверенных источников, а продукты питания - приобретенные в магазинах.

Тщательно мойте руки и полощите рот 0,5%-ным раствором питьевой соды.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Правила проведения йодной профилактики Урок для учащихся 8 класса

Радиация без вкуса, без цвета, без запаха определяется дозиметром анализом крови

Радиоактивные осадки выпадают в виде дождя, снега, пыли или пепла. Радиационные осадки

Характер поражения Удар РАДИАЦИИ по человеку ПРИВОДИТ К ЛУЧЕВОЙ БОЛЕЗНИ

Лучевая болезнь

Цель проведения йодной профилактики Защитить щитовидную железу препаратами стабильного йода от проникновения в щитовидную железу радиоактивного йода-131, т.к щитовидная железа управляет всеми железами внутренней секреции в организме человека.

Защитный эффект йодной профилактики Время приёма препаратов стабильного йода Фактор защиты За 6 часов до поступления в организм йода-131 в 100 раз Во время поступления в организм йода-131 в 90 раз Через 2 часа после разового поступления йода-131 в 10 раз Через 6 часов после разового поступления йода-131 в 2 раза

Возрастные категории Беременным йодную профилактику проводить нельзя. Опасно для плода! Грудным детям с молоком матери При искусственном вскармливании и детям до 2 лет йодная сетка на стопы, ладони, ягодицы Детям от2-14 лет 1-3 капли 5% раствора йода на 100 мл питательной жидкости, в день. 1раз в день 7дней йодовая сетка на стопы, ладони. Взрослым 3-5 капли 5% раствора йода На 100 мл питательной жидкости, в день. После еды 3раза в день.1раз в день 7дней йодовая сетка на стопы, ладони.

Препараты стабильного йода 5% спиртовой раствор йода С помощью аптекарской пипетки йод капают в стакан с питательной жидкостью в соответствии возрастным категориям 100 мл суточная доза Питательная жидкость: Молоко Кисель Сок Бульон Вода компот Недопустимо разводить йод: в спиртных газированных и кисломолочных напитках

Препараты стабильного йода Таблетки принимаем детям до 2 лет по1/2 таблетки (0,04), взрослвм по1 таблетке1 раз в день. Йодистого калия запивая молоком. В течение 7-8 дней, Но не более 10 дней Продаются в аптеке Индивидуальная аптечка АИ-2 Выдаётся населению санитарными постами из Штаба ГО города (района)

При радиационно-опасных авариях в облаке находится большое количество радиоактивного йода-131, период полураспада которого 8 дней. Поэтому проводить йодную профилактику необходимо в течение первых 8 дней, но не боле 10 дней. избыточное содержание йода в организме человека вредно для его здоровья. Длительность йодной профилактики Помните!

Постепенно уровень радиации на местности снижается примерно в 10 раз через отрезки времени кратные 7 (через 7 часов после выброса РОВ в 10 раз, а через 49 часов – почти в 100 раз). Если радиационный фон превышает допустимый уровень по истечении 10 дней, то принимается решение - ЭВАКУИРОВАТЬ население в чистую зону. Снижение уровня радиации