Радиационно опасные объекты в россии. Радиационно – опасные объекты Опасные радиоактивные вещества и объекты

Российская Экономическая Академия имени Плеханова.

Реферат по БЖД

«Радиационно-Опасные Объекты».

Выполнил студент

факультета маркетинга 1 курса

группы 1112 Абраков Иван

1. Введение.

2. Источники Опасности.

3. Система Классификации и Шкала Происшествий.

4. Последствия для населения и территорий.

6. Заключение.

7. Литература и материалы.

1.Введение.

В первой половине двадцатого века мир столкнулся с новой технологией, связанной с атомной энергией. С того времени атомные технологии совершили большой рывок в развитии, открывая миру новые перспективы в основном в области снабжения электроэнергией как крупного производства, так и большей части населения страны. В настоящее время в мире эксплуатируется 442 атомных энергоблока общей мощностью около 369 МВт. Картина распределения АЭС по странам мира проиллюстрирована данными на 15/06/2006 службы информации по энергетическим реакторам – PRIS (Power Reactor Information Service) на рис.1. Серьезно рассматривают развитие атомной

энергетики страны, не имеющие собственной атомной генерации: Италия, Польша, Белоруссия, Турция, Египет, Марокко, Казахстан, Чили, Нигерия, Бангладеш, Индонезия, Вьетнам, Таиланд, Австралия, Новая Зеландия.

Однако помимо перспектив в научно-технической и экономической областях, атомные технологии таят в себе чрезвычайную опасность для экологии всей планеты. Так, например, последствия аварии на Чернобыльской АЭС, произошедшей более двадцати лет назад (1986 г), сказываются до сих пор (загрязнено большое количество почв в Украине, Белоруссии, Европе, увеличилось количество заболевших раком, загрязнен воздух, вода, нанесен колоссальный экономический ущерб странам, подвергшимся загрязнению радиоактивными выбросами).

Поэтому, для заблаговременной разработки мер защиты и предотвращения нанесения ущерба вследствие аварий на Радиационно-Опасных Объектах (РОО) была создана система классификации происшествий на РОО.

Во многих странах, в том числе и в России, предпринимаются меры по повышению уровня безопасности на АЭС и РОО. (Для АЭС: Усовершенствование конструкции реакторов, создание аварийных систем, повышение ресурсной стойкости АЭС, применение современных технологий, усиление контроля безопасности.)

а) Краткая характеристика РОО.

В настоящее время практически в любой отрасли народного хозяйства и науки во все более возрастающих масштабах используются радиоактивные вещества и источники ионизирующих излучений. Особенно высокими темпами развивается ядерная энергетика. Атомная наука и техника таят в себе огромные возможности, но вместе с тем и большую опасность для людей и окружающей среды.

Ядерные материалы приходится возить, хранить, перерабатывать, что создает дополнительный риск радиоактивного загрязнения окружающей среды, поражения людей, животных и растительного мира.

Радиационно-опасный объект (РОО ) – предприятие, на котором при авариях могут произойти массовые радиационные поражения .

Среди техногенных источников ЧС наибольшую опасность по тяжести поражения, масштабам и долговременности действия поражающих факторов представляют радиационные катастрофы. В обычных условиях радиационная обстановка в стране определяется, во-первых, природной радиоактивностью, включая космические излучения; во-вторых, радиоактивным фоном обусловленным проведенными с 1945 по 1989 г. не менее 1820 испытаниями ядерного оружия; в-третьих, наличием территорий, загрязненных радиоактивными веществами вследствие произошедших в предыдущие годы аварий на предприятиях атомной промышленности и энергетики; в-четвертых, эксплуатацией ядерно- и радиационно - опасных объектов.

Количество отработанного ядерного топлива в РФ составляет более 10 000 тонн. Объемы его постоянно растут, а мощности по переработке остаются прежними, в итоге на АЭС отработанного топлива хранится в среднем в 1,5-2 раза больше, чем в активных зонах, а на Белоярской, Билибинской, Ленинградской и Курской АЭС – в 3 раза.

Схожее положение с радиоактивными отходам. Основные источники их образования – добыча, обогащение урановой руды и производство тепловыделяющих элементов (ТВЭЛов), эксплуатация АЭС, регенерация отработавшего топлива, использование радиоизотопов. Общий объем таких отходов достиг 500 млн кубических метров.

Во всем мире стремительно растут энергозатраты. Производство электроэнергии удваивается за 10-15 лет. Мировые запасы нефти и газа могут быть исчерпаны за 50-80 лет. Запасы твердых топлив также не безграничны. После нефтяного кризиса 60-х годов, когда цена на нефть подскочила в 15 раз, начался интенсивный поиск альтернативных источников энергии. Но пока использование энергии ветра, волн и солнца дает неутешительные результаты.

Сегодня потребление первичных энергоресурсов на душу населения составляет в РФ 6,7 тонн условного топлива в год. Для сравнения: в Западной Европе – 5, в США – 11 тонн.

Основная часть производства электроэнергии приходится на тепловые электростанции (ТЭС) – 60%, для чего расходуется 211 млн. тонн условного топлива, или 41% потребляемого в России газа, 14% нефти, 37% угля. Специфика экономики России такова, что основные энергоресурсы расположены в восточных регионах страны, а около 70% всего электропроизводства и потребления осуществляется в европейской части, и на доставку энергоносителей в эти районы расходуется около 20% всего добываемого топлива.

Более 75% энергии на нашей планете получается в результате переработки ископаемых топлив, при этом в атмосферу выбрасывается 21 млрд. тонн двуокиси углерода, что грозит глобальной экологической катастрофой.

Топливо-энергетический комплекс, обладает большой инертностью. Сброс производства при прекращении инвестиций происходит в течении 2-3 лет, а восстановление прежнего объема, при дополнительных вложениях, достигается лишь через 8-15 лет

Единственный путь, который может отвести угрозу энергетического кризиса в настоящее время, это использование энергии атомного ядра.

ТЭС, вырабатывая энергию, сжигает уголь, остается шлак и зола. Много золы. Экибастузская ГРЭС-1, например, за один год только в воздух выбрасывает 1 млн. 281 тыс. тонн золы, 177 тыс. тонн сернистого ангидрида, 48 тыс. тонн окислов азота. Леса, луга, вода, почва вокруг оказались загрязненными на площади 5 тыс. квадратных километров. Трава хрустит на зубах. Она как рашпиль стачивает зубы у коров и овец за 2-3 года. Подсчитано, что работа подобной ГРЭС наносит ущерб природе на такую же сумму, сколько стоит топливо, а иногда и больше. 70 млн. тонн пыли и ядовитых газов выбрасывается ежегодно в небо страны тепловыми электростанциями.

АЭС в этом отношении чисты : ни золы, ни газов. Да, выработка тепла на АЭС сопровождается выделением опасных радиоактивных веществ, ионизирующих излучений, есть проблемы захоронения отходов топлива. Но станция будет безопасна, если в любом случае, при любой аварии радиоактивность не выйдет за пределы защитных сооружений. Атомная энергия единственно реальная замена ископаемому топливу .

Помимо АЭС в РФ также имеются 9 атомных судов с 15 реакторами. В ВМФ и Минтрансе РФ всего около 250 судов с ядерными энергетическими установками. В пунктах отстоя в ожидании утилизации находятся 183 атомных подводных лодок, причем, 120 из них с более 200 ядерными реакторами стоят с не выгруженным ядерным топливом. (Данные по состоянию на момент гибели АПЛ «КУРСК» осень 2000 года). Кроме того, 70% АПЛ стратегического назначения нуждаются в ремонте. Из оставшихся 75% будут потеряны из-за окончания гарантийного срока корабельных комплексов.

К РОО относятся и 30 НИИ со 113 исследовательскими ядерными установками. 50 таких реакторов находятся в Московской области, а 9 из них непосредственно в Москве.

Предприятий ядерно-топливного цикла 12, в т.ч. 3 из них с радиохимическим производством.16 региональных спецкомбинатов «Радон» по переработке, транспортировке и захоронению отходов. Пункты захоронения радиоактивных отходов (ПЗРО) специальных комбинатов «Радон» расположены рядом с городами Москва, Санкт-Петербург, Волгоград, Нижний Новгород, Грозный, Иркутск, Казань, Самара, Мурманск, Новосибирск, Ростов-на-Дону, Саратов, Екатеринбург, Благовещенск республики Башкортостан, Челябинск и Хабаровск.

Согласно данным Информационной системы МАГАТЕ по энергетическим реакторам в 30 странах мира эксплуатируется 442 АЭС общей мощностью примерно 369 МВт. На них производится около 17% электроэнергии от общемирового уровня.

б) Основные опасности на РОО.

Факторы опасности ядерных реакторов достаточно многочисленны. Перечислим лишь некоторые из них.

Возможность аварии с разгоном реактора . При этом вследствие сильнейшего тепловыделения может произойти расплавление активной зоны реактора и попадание радиоактивных веществ в окружающую среду. Если в реакторе имеется вода, то в случае такой аварии она будет разлагаться на водород и кислород, что приведет к взрыву гремучего газа в реакторе и достаточно серьезному разрушению не только реактора, но и всего энергоблока с радиоактивным заражением местности. Аварии с разгоном реактора можно предотвратить, применив специальные технологии конструкции реакторов, систем защиты, подготовки персонала.

Радиоактивные выбросы в окружающую среду . Их количество и характер зависит от конструкции реактора и качества его сборки и эксплуатации. У РБМК они наибольшие, у реактора с шаровой засыпкой наименьшие. Очистные сооружения могут уменьшить их. Впрочем, у атомной станции, работающей в нормальном режиме, эти выбросы меньше , чем, скажем, у угольной станции, так как в угле тоже содержатся радиоактивные вещества, и при его сгорании они выходят в атмосферу.

Необходимость захоронения отработавшего реактора. На сегодняшний день эта проблема не решена, хотя есть много разработок в этой области.

Радиоактивное облучение персонала. (Можно предотвратить или уменьшить применением соответствующих мер радиационной безопасности в процессе эксплуатации атомной станции.)

Начиная с 50-х годов, развитые страны продолжают наращивать свой производственный ядерный потенциал. АЭС все увереннее выступают в качестве важного источника энергии в странах Запада, США, Канады, Японии и др. Так доля АЭС в общем объеме вырабатываемой электроэнергии составляет: в США –14%, Франции- 70%, Японии-20%, Германии-30%, Великобритании-17%, Канаде - более 13%, Болгарии- около 30% и Швеции 100%. Ускоренными темпами развивается ядерная энергетика в Южной Корее, Индии, Аргентине, Пакистане, Тайване, ЮАР.

Параллельно с этим ростом идет увеличение аварий на РОО. Так, с 1957 года по настоящее время в ряде западных стран и США было зафиксировано около 200 происшествий только на АЭС, в том числе более 30 крупных аварий многие из которых сопровождались выбросами радиоактивных продуктов распада в окружающую среду. Только за 1971 – 1985 гг. в 14 странах на АЭС произошла 151 авария различной сложности. Кроме того, имеются данные о более чем 20 инцидентах с ядерным оружием в США и Великобритании за последние 40 лет. Хотя тяжелых радиационных последствий данные инциденты не имели.

В соответствии с экспертной оценкой инцидентов с ядерным оружием в США и Великобритании с 1950 по 1998 г.г. произошло 9 аварий, которые могли привести к возникновению ядерной войны, 77 аварий, которые привели или могли привести к разрушениям и гибели людей, к заражению местности токсичными и радиоактивными веществами, 100 аварий с носителями, на которых находилось или могло находиться ядерное оружие.

В 1996 году на АЭС РФ зарегистрировано 87 нарушений в т.ч. 22 с отключением энергоблоков, 28 случаев приведшим к снижению мощности.

Под ядерной (радиационной) аварией понимают потерю управления цепной реакцией в реакторе либо образование критической массы при перегрузке, транспортировке и хранении тепловыделяющих сборок, или повреждению ТВЭЛов, приведшую к потенциально опасному облучению людей сверх допустимых пределов. Иногда используется понятие ядерно-опасного режима , который представляет собой отклонения от пределов и условий безопасности эксплуатации реакторной установки, не приводящие к ядерной аварии. Ядерно-опасный режим можно рассматривать как режим, создающий аварийную ситуацию.

Главной опасностью аварий на РОО был и будет выброс в окружающую природную среду РВ, сопровождающийся тяжелыми последствиями. Радиационная авария присуща не только АЭС, но и всем предприятиям ядерного топливного цикла, а также предприятиям, использующим радиоактивные вещества. К таким предприятиям можно отнести предприятия, добывающие урановую или ториевую руду; заводы по переработке руды; обогатительные заводы, заводы по изготовлению ядерного топлива; хранилища РВ и многие другие. Радиационные аварии на РОО могут возникнуть в процессе испытаний, хранения, транспортировки ядерного оружия.

Основным поражающим фактором при авариях на реакторах АЭС являются радиоактивные загрязнения местности, а источником загрязнения является атомный реактор как мощный источник накопленных радиоактивных веществ.

3. Система Классификации и Шкала Происшествий

Классификация производится с целью заблаговременной разработки мер, реализация которых в случае аварии должна уменьшить вероятные последствия и содействовать успешной ее ликвидации.

Классификация возможных аварий на РОО производится по двум признакам: во-первых, по типовым нарушениям нормальной эксплуатации и, во-вторых, по характеру последствий для персонала, населения и окружающей среды.

При анализе аварий их принято характеризовать цепочкой: исходное событие – пути протекания – последствия.

Аварии, связанные с нарушениями нормальной эксплуатации, подразделяются на проектные , проектные с наибольшими последствиями и запроектные .

Анализ различного рода отклонений в эксплуатации РОО, а так же аварийных ситуаций показывает, что возможны аварии двух типов .

Первый тип – гипотетический не вызывает загрязнения).

Второй тип – с полным разрушением реактора (хранилища), которое может сопровождаться цепной реакцией, т.е. ядерным взрывом малой мощности или тепловыми взрывами, вызванными интенсивным паро- и газообразованием.

Причиной ядерной аварии может быть образование критической массы при перегрузке, транспортировке, хранении ТВЭЛов, нарушении режимов хранения отработанных ядерных отходов.

Радиационная авария происшествие, приведшее к выходу (выбросу) радиоактивных продуктов и ионизирующих излучений за предусмотренные проектом пределы (границы) РОО в количествах, превышающих установленные нормы безопасности .

Радиационные аварии на РОО подразделяются на три типа :

Локальная – нарушение в работе РОО, при котором не произошел выход радиоактивных продуктов или ионизирующего излучения за предусмотренные границы оборудования, технологических систем, зданий и сооружений в количествах, превышающих установленные для нормальной эксплуатации предприятия значения.

Местная – нарушение в работе РОО, при котором произошел выход радиоактивных продуктов в пределах санитарно – защитной зоны и количествах, превышающих установленные нормы для данного предприятия.

Общая – нарушение в работе РОО, при котором произошел выход радиоактивных продуктов за границу санитарно – защитной зоны и количествах, приводящих к радиоактивному загрязнению прилегающей территории и возможному облучению проживающего на ней населения выше установленных норм.

Отечественная классификация, согласно которой в порядке возрастания серьезности последствий все аварии на РОО разделены на девять классов. Первые восемь классов охватывают аварии с широким диапазоном возможных последствий – от незначительных нарушений в работе до серьезных поломок в оборудовании. Такие аварии относятся к проектным, они рассматриваются при проектировании РОО а также в окончательных выводах по анализу безопасности эксплуатации объекта. В целом под обеспечением радиационной безопасности понимается проведение комплекса организационных и социальных мероприятий направленных на исключение или максимальное снижение опасности вредного воздействия ионизирующих излучений на организм человека и уменьшение радиоактивного загрязнения окружающей среды до безопасных уровней.

Аварии, отнесенные к девятому классу, являются запроектными и в процессе проектирования не рассматриваются, из-за малой вероятности их возникновения. Эти аварии относятся также к гипотетическим или тяжелым . Подобные аварии возникают при повреждении или разрушении активной зоны реактора или хранилища отходов ядерного топлива и возможны при возникновении не предусмотренного в проекте аварийного исходного события.

С точки зрения медицинских последствий , контингента облучаемых лиц и вида лучевого воздействия на организм человека радиационные аварии разделяются на пять основных групп : малые, средние, большие, крупные и катастрофические.

К малым радиационным авариям относятся инциденты не связанные с серьезными медицинскими последствиями и характеризуются только экономическими потерями. При этом возможно облучение лиц различной категории. Дозы лучевого воздействия не должны превышать установленных НРБ-96 санитарных норм. Для четырех групп радиационных аварий, возможны медицинские последствия – острые и хронические лучевые поражения, неблагоприятные стохастические последствия, вторую и третью группы объединяют производственные радиационные аварии, т.е. инциденты, связанные с персоналом; четвертая и пятая группы – коммуникальные аварии и происшествия, при которых страдает население. Для радиационных аварий второй группы характерно только внешнее, а для третьей группы – внешнее и внутреннее облучение персонала.

Для больших аварий используются дополнительные подразделения по критерию распространенности связанные с радиоактивным загрязнением:

1. персонала и рабочих мест;

2. производственного помещения;

3. здания;

4. территории;

5. санитарно-защитной зоны.

Четвертая группа радиационных аварий (крупные аварии) объединяет инциденты, при которых возможно чисто внешнее, совместное внешнее и внутреннее облучение небольшого числа лиц.

В пятую группу (катастрофические аварии) относятся радиационные аварии, при которых наблюдается совместное внешнее и внутреннее облучение больших контингентов населения, проживающего в одном или нескольких регионах.

Кроме всевозможных классификаций радиационных аварий на РОО по видам существует специальная шкала происшествий на АЭС разработанная под эгидой МАГАТЭ в 1989 г., введена в действие в России с сентября 1990г. Изначально она задумывалась для информации об аварийных ЧС на АЭС.

Шкала происшествий на АЭС.

INES

(Международная шкала событий на АЭС)

7 ступень - глобальная авария , сопровождающаяся большим выбросом РВ в окружающую среду, радиологически эквивалентным от тысячи до десятков тысяч терабеккерелей радиоактивного йода-131, нанесен значительный ущерб здоровью людей и окружающей среде.

Пример: Чернобыль.

6 ступень – тяжелая авария , по внешним последствиям характеризующаяся значительным выбросом РВ радиологически эквивалентным от десятков до сотен терабеккерелей радиоактивного йода-131 в ограниченной зоне с необходимостью введения в действие противоаварийных мероприятий.

Пример: Авария в Уиндскейл (Великобритания) в 1957 г.

5 ступень - значительный выброс продуктов деления в окружающую среду эквивалентен величинам от нескольких единиц до десятков теребеккерелей радиоактивного йода131. Возможна частичная эвакуация, необходима местная йодная профилактика.

4 ступень авария в пределах АЭС – частичное разрушение активной зоны как механическое, так и тепловое (плавлением). Обслуживающий персонал может получить острое отравление порядка 2 зиверта (200 рад,бэр). Возможный выброс в окружающую среду вызывает облучение отдельных лиц из населения в пределах нескольких милизивертов.

Защитных мер не требуется, но должен осуществляться контроль продуктов питания.

Пример: Франция, АЭС Сен-Лоран в 1980 г.

3 ступень серьезное происшествие из-за отказа оборудования или ошибок эксплуатации. В окружающую среду выброшены радиоактивные продукты, возможная доза облучения отдельных людей не превышает нескольких милизивертов. Внутри АЭС обслуживающий персонал может быть переоблучен дозами порядка 50 милизивертов.

Пример: Авария на АЭС Вандельос, Испания 1989 г.

2 и 1 ступени функциональные отключения и отказы в управлении , не вызывающие непосредственного влияния на безопасность АЭС, а тем более на окружающую среду.

0 и ниже аварии и происшествия технического характера , не связанные с атомной установкой и ее работой.

Говоря о различных видах радиационных аварий, следует коротко остановиться на рассмотрении аварий с ядерным оружием и их последствиях.

Аварии с ядерным оружием по степени их опасности можно разбить на четыре категории.

а) Случайный или несанкционированный взрыв ядерного боеприпаса, который не может привести к военному конфликту или ядерной войне.

б) Взрыв обычного ВВ, входящего в состав ядерного боеприпаса или горение ядерного боеприпаса.

в) Захват, кража или потеря ядерного боеприпаса либо его компонентов, включая сбрасывания с самолета.

а) Авария с носителями, на которых находятся ядерные боеприпасы.

б) Авария с носителями, на которых могут находиться ядерные боеприпасы.

В общем случае последствия аварий с ядерным оружием по степени опасности подразделяются на три группы.

К первой группе относятся последствия, возникающие в результате повреждения или разрушения ядерного боеприпаса. В этом случае может возникнуть заражение местности токсичными нерадиоактивными веществами, такими, как бериллий, литий, свинец.

Разрушение или повреждение ядерного боеприпаса может привести к взрыву высоко имплозивных ВВ (взрывчатых веществ) входящих в состав ядерного боеприпаса. В этом случае радиус зон поражения ударной волной может достигать нескольких сотен метров. Взрыв обычного ВВ будет способствовать заражению местности радиоактивными и токсическими веществами в результате разрушения ядерного боеприпаса. В зависимости от типа ядерного боеприпаса, окружающая местность может быть заражена радиоактивными различными изотопами: Уран-239, Уран-238,Плутоний-239, Торий-232, дейтерий, тритий и др.

Ко второй группе относятся последствия инцидентов, при которых может произойти ядерный взрыв. При взрыве ядерного боеприпаса мощностью 150 Кт радиус поражения людей световым излучением, мгновенная смерть, будет составлять около 5 км, а 1 Мт – около 13 км.

Большую опасность для людей представляет радиоактивное заражение местности продуктами ядерного взрыва, которые представляют собой до 300 радиоактивных изотопов более чем 35 различных химических элементов таблицы Менделеева. Даже через несколько часов после взрыва, люди находящиеся на расстоянии нескольких сотен километров по пути следования радиоактивного облака, могут получить летальные дозы облучения.

Исследование причин возникновения тяжелых аварий, последовательности развития событий, от исходного до конечного состояния, дает возможность сделать выводы относительно некоторых общих тенденций.

На АЭС основными причинами радиационных аварий с различной степенью расплавления активной зоны реактора являются следующие:

1.недостатки конструкции;

2.недостатки в техническом обслуживании, включая перегрузку топлива или испытаний;

3.вина оператора;

4.остановка реактора;

5.низкое качество разработки, изготовления и эксплуатации объекта или технической системы;

6.высокая степень износа оборудования;

7.низкий уровень финансирования.

Эксперты считают, что все произошедшие в России аварии и катастрофы с РОО можно было предотвратить .

4. Последствия для населения и территорий .

Рассмотрим образование поражающих факторов и их воздействие при аварии на АЭС .

1. Световое излучение и явление проникающей радиации может оказать воздействие, в основном, на работающую смену персонала.

2. Радиоактивное заражение местности в результате выбросов продуктов распада в атмосферу во всех случаях будет значительным и на больших площадях.

3. Ударная волна (сейсмическая) образуется только при ядерном взрыве реактора, при тепловом взрыве ее действие на окружающую среду незначительно.

Разберем особенности радиоактивного заражения местности при авариях на АЭС, учитывая в первую очередь опыт аварии на ЧАЭС. Источником радиоактивного заражения выбросов в атмосферу из аварийного реактора явились продукты цепной реакции. В выбросах было обнаружено 23 основных радионуклида.

В первые минуты после взрыва и образования радиоактивного облака наибольшую угрозу для здоровья людей представляли изотопы так называемых благородных газов (ксеноны), но они быстро рассеиваются в атмосфере, теряя свою активность. Таким образом, радиоактивное заражение не образуется.

В последующем воздействуют на людей коротко живущие радиоактивные компоненты, такие как Йод -131(8 суток).

Затем воздействуют на организм долгоживущие изотопы, Цезий-137 и Стронций-90 (до 30 лет).

На фоне тугоплавкости большинство радионуклидов, такие как теллур, йод, цезий обладают высокой летучестью. Вот почему аварийные выбросы реакторов всегда обогащены этими радионуклидами, из которых йод и цезий имеют наиболее важное воздействие на организм человека и животный мир. Состав аварийного выброса продуктов деления реактора существенно отличается от состава продуктов ядерного взрыва. При ядерном взрыве преобладают радионуклиды с коротким периодом полураспада. Поэтому на следе радиоактивного облака происходит быстрый спад мощности дозы излучения. При авариях на АЭС характерно радиоактивное загрязнение атмосферы и местности легколетучими радионуклидами (Йод-131, Цезий-137 и Стронций-90), а, во-вторых, Цезий-137 и Стронций-90 обладают длительными периодами полураспада. Поэтому такого резкого уменьшения мощности дозы, как это имеет место на следе ядерного взрыва, не наблюдается.

И еще одна особенность. При ядерном взрыве и образовании следа для людей главную опасность представляет внешнее облучение (90-95% от общей дозы). При аварии на АЭС с выбросом активного материала картина иная. Значительная часть продуктов деления ядерного топлива находится в парообразном и аэрозольном состоянии. Вот почему доза внешнего облучения здесь составляет 15%, а внутреннего – 85%.

Загрязнение местности от Чернобыльской катастрофы происходило в ближайшей зоне 80 км в течение 4-5 суток, а в дальней зоне примерно 15 дней. Наиболее сложная и опасная радиационная обстановка сложилась в 30-км зоне от АЭС, в Припяти и Чернобыле. Из-за этого оттуда было эвакуировано все население. К началу 1990г. во многих районах мощность дозы уменьшилась и приблизилась к фоновым значениям 12-18 мкР/ч. Припять и на сегодня представляет опасность для жизни.

Специалисты выделяют следующие потенциальные последствия радиационных аварий :

1. немедленные смертельные случаи и травмы среди работников предприятия и населения;

2. латентные смертельные случаи заболевания настоящих и будущих поколений , в том числе изменения в соматических клетках, приводящие к возникновению онкологических заболеваний, генетические мутации, оказывающие влияние на будущие поколения, влияние на зародыш и плод вследствие облучения матери в период беременности;

3. материальный ущерб и радиоактивное загрязнение земли и экосистем ;

4. ущерб для общества, связанный с боязнью относительно потенциальной возможности использования ядерного топлива для создания ядерного оружия .

К последствиям серьезных радиационных аварий относится и наличие косвенного риска для здоровья и жизни людей. Косвенный риск возникает при непосредственном осуществлении мер безопасности, эвакуации при аварии. Например: эвакуационные мероприятия, вызванные радиационной аварией, обусловливают возникновение множества косвенных рисков: смертельные случаи вследствие дорожно-транспортных происшествий, увеличение числа сердечных приступов у эвакуируемого населения, психические травмы, вызванные стрессовой ситуацией во время эвакуации, и т.п.

5. Методы ликвидации последствий аварий на РОО.

Приоритетной целью ликвидации последствий радиационных аварий (ЛПА) является обеспечение требуемого уровня мер защиты населения.

Принятие решений по ликвидации последствий аварий зависит от целей и задач, определяемых каждой конкретной стадией работ.

На ранней стадии
1.локализация источника аварии, т.е. прекращение выброса радиоактивных веществ в окружающую среду;
2.выявление и оценка складывающейся радиационной обстановки;
3.снижение миграции первичного загрязнения на менее загрязненные или незагрязненные участки путем локализации или удаления загрязненных фрагментов технологического оборудования, зданий и сооружений, просыпей и проливов радиоактивных веществ;
4.создание временных площадок складирования радиоактивных отходов.
Характерной особенностью ранней стадии аварии является высокая вероятность возникновения вторичных загрязнений за счет переноса нефиксированных, первично выпавших радиоактивных веществ на менее загрязненные или незагрязненные поверхности.

С течением времени происходит увеличение прочности фиксации загрязнения на поверхностях, приводящее к необходимости применения более сложных и дорогостоящих методов его ликвидации, увеличению объемов образующихся радиоактивных отходов, продолжительности и стоимости работ по обеспечению требуемого уровня защиты населения. Поэтому эффективность и оперативность принятия решений по ликвидации выявленных нефиксированных загрязнений на ранней фазе имеет первостепенное значение. Эти решения надо прежде всего принимать по наиболее критическим объектам загрязнения.

На промежуточной стадии решаются следующие задачи ЛПА:
1.стабилизация радиационной обстановки и обеспечение перехода к плановым работам по ЛПА;
2.организация постоянного контроля радиационной обстановки;
3.принятие решения о методах и технических средствах ЛПА;
4.проведение плановых мероприятий по ЛПА до достижения установленных контрольных уровней радиоактивного загрязнения;
5.создание временной или стационарной системы безопасного обращения с радиоактивными отходами (локализация и ликвидация объектов первичного и вторичного загрязнений, удаление образующихся радиоактивных отходов на временные или стационарные площадки и т.д.);
6.обеспечение требуемого уровня мер защиты населения, проживающего на загрязненных территориях.
На этой стадии производится уточнение и детализация данных инженерной и радиационной обстановки, зонирование территорий по видам и уровням излучений и реализация мероприятий, необходимых и достаточных для обеспечения заданного уровня мер защиты населения.

В этот период на поверхностях объектов радионуклиды находятся в нефиксированных или слабо фиксированных формах. Методы ЛПА на этой фазе должны исключить возможность возникновения вторичных загрязнений, предотвратить процесс фиксации радиоактивных веществ на поверхности и проникновение их вглубь объема и, как следствие, снизить уровень требований к необходимым мерам защиты населения.

На поздней стадии решаются следующие задачи ЛПА:
1.завершение плановых работ по ЛПА и доведение радиоактивного загрязнения до предусмотренных Нормами радиационной безопасности уровней;
2.ликвидация временных площадок складирования радиоактивных отходов или организация радиационного контроля безопасности хранения на весь период потенциальной опасности;
3.обеспечение проживания населения без соблюдения мер защиты.

Работы на поздней стадии ЛПА наиболее трудоемки и продолжительны. Радионуклиды, определяющие радиационную обстановку на загрязненных объектах, в этот период находятся преимущественно в фиксированных и трудно удаляемых известными методами дезактивации формах. Выбор наиболее эффективных методов может быть сделан только по данным детальных исследований нуклидного состава и физико-химических форм радиоактивного загрязнения.

Основными принципами планирования работ по локализации загрязнений и ликвидации последствий аварии являются следующие:
1.оценка состава и основных форм нахождения радионуклидов загрязнения;
2.учет свойств основных типовых поверхностей территории и объектов;
3.оценка предполагаемого характера (прочности) фиксации радиоактивного загрязнения на различных поверхностях;
4.определение приоритетов (очередности) проведения работ по локализации и ликвидации загрязнений на различных объектах (участках) в зависимости от их влияния на формирование радиационной обстановки;
5.выбор наиболее эффективного и реально осуществимого способа локализации и ликвидации радиоактивного загрязнения объектов исходя из возможности имеющихся в распоряжении сил и технических средств.

Локализация и ликвидация источников радиоактивного загрязнения проводится с использованием следующих основных методов:
1. Сбор и локализация высокоактивных радиоактивных материалов .
Особенностью сбора и локализации высокоактивных радиоактивных материалов (осколки топливных элементов, конструкционных и защитных материалов) является, как правило, то, что точное расположение радиоактивных источников не известно, по территории они распределены случайным образом, при проведении работ возможно неожиданное "появление" источника в результате вскрытия завала или изменения места его расположения.

Проведение работ в условиях полей с высокой мощностью экспозиционной дозы (МЭД) гамма-излучения должно планироваться с максимально возможным применением средств механизации. В случае крайней необходимости привлечения ручного труда должны быть обеспечены:
1.подбор руководящего технического персонала, способного вести работы без детально разработанного плана и принимать управленческие решения по оперативной информации через средства наблюдения за работающими;
2.разработка детальных организационно-технических мероприятий по работам в зонах высоких МЭД до начала работ;
4.четкая организация рабочих мест в зоне сосредоточения персонала непосредственно перед выходом в зоны работ (места приема персонала, места надевания защитной одежды, пост дозиметрического контроля, пункт управления, места вывода персонала в зоны работ, места раздевания);
5.организация подразделений комендантской службы для поддержания установленного порядка в зоне сосредоточения;
6.преодоление психологического барьера у персонала, непосредственно выполняющего особо опасные работы (должны отбираться добровольцы);
7.постановка конкретных задач и подробный инструктаж.

2. Метод перепахивания грунта.
Основной защитный эффект достигается за счет "разбавления" активности по толщине перепаханного слоя грунта. Характеристикой эффективности использования данного способа является коэффициент ослабления Кос, как правило, определяемый по мощности экспозиционной дозы.

3. Метод экранирования.
Данный метод используется обычно после снятия загрязненного слоя при высоких остаточных уровнях радиоактивного загрязнения. Характеристикой эффективности так же является коэффициент ослабления Кос. На территории промплощадки аварийного объекта может широко применяться экранирование путем засыпания песком, гравием или покрытием бетоном или бетонными плитами.

4. Метод обваловки и гидроизоляции загрязненных участков.
Используется обычно как временная мера на первых этапах работ для предотвращения "расползания" загрязнения за счет смыва осадками и для исключения попадания радиоактивных веществ в грунтовые воды. Для сильно заглубленных загрязнений могут использоваться сложные гидротехнические сооружения: "стена в грунте", "фильтрующая завеса". Применение этого метода предполагает большой объем земляных работ с привлечением инженерно-строительной техники.

5. Методы связывания радиоактивных загрязнений вяжущими и пленкообразующими композициями . Основными методами являются: пылеподавление и химико-биологическое задернение.

Для закрепления (химико-биологического задернения) отдезактивированных и сильно пылящих участков местности нашли применение рецептуры, содержащие в своем составе пылеподавляющие композиции (ССБ, ММ-1, латекс) в качестве основы, минеральные и органические удобрения и смеси семян многолетних злаковых и бобовых трав.
В качестве основных технических средств пылеподавления используются поливомоечные машины, войсковые авторазливочные станции, сельскохозяйственная авиация.
Одной из самых эффективных мер радиационной защиты является дезактивация. Наиболее подходящими сроками проведения дезактивации, если не рассматривать необходимость ее для обеспечения безопасности при эвакуации населения или проведении неотложных аварийных работ на промплощадке аварийного объекта (предприятия), является период поздней фазы аварии. Это определяется временем, необходимым для планирования и организации дезактивационных работ, и сроками наступления относительной стабилизации радиационной обстановки, когда прекращается поступление радиоактивных веществ из источника выброса и заканчивается формирование следа радиоактивного загрязнения.

Основными методами дезактивации отдельных объектов являются:
а) для открытых территорий (грунта):
1.снятие и последующее захоронение верхнего загрязненного слоя грунта (механический способ);
2.дезактивация методом экранирования;

4.химические методы дезактивации грунтов (промывка);
5.биологические методы дезактивации (естественная дезактивация);
б) для дорог и площадок с твердым покрытием:
1.смыв радиоактивных загрязнений струёй воды или дезактивирующих растворов (жидкостный способ);
2.удаление верхнего слоя специальными средствами или абразивной обработкой;
3.дезактивация методом экранирования;
5.очистка методом вакуумирования;
6.сметание щетками поливомоечных машин (многократно);
в) для участков местности, покрытых лесокустарниковой растительностью :
1.лесоповал и засыпка чистым грунтом после опадания кроны;
2.срезание кроны с последующим ее сбором и захоронением;
г) для зданий и сооружений:
1.обработка дезактивирующими растворами (с щетками и без них);
2.обработка высоконапорной струёй воды;
3.очистка методом вакуумирования;
5.замена пористых элементов конструкций;
6.снос строении.

Основными этапами дезактивационных работ являются паспортизация объекта дезактивации, подготовительные мероприятия и непосредственно дезактивация объекта.
Очередность проведения дезактивационных работ на территории зоны радиоактивного загрязнения определяется необходимостью последовательной дезактивации, начиная с наиболее загрязненных и заканчивая менее загрязненными местами и участками постоянного или длительного пребывания населения в процессе его жизнедеятельности или трудовой деятельности. Очередность дезактивации зданий, сооружений, средств производства, транспортных средств, дорог должна также определяться необходимостью первоочередной дезактивации наиболее загрязненных объектов, находящихся в постоянном обращении.
При выборе соответствующих приемов для конкретных объектов дезактивации необходимо руководствоваться наличием ресурсов, ожидаемой эффективностью и производительностью. Следует помнить, что практически всегда эффективность дезактивации обеспечивается тщательным соблюдением соответствующей технологии и постоянным оперативным дозиметрическим или радиометрическим контролем, иначе может потребоваться повторение операций или увеличение их числа при многократных обработках. Наиболее эффективными являются ручные приемы , которые, однако, характеризуются наибольшей трудоемкостью и повышенным облучением персонала.
При проведении дезактивации участков территории необходимо определять порядок работ (движение транспорта и персонала), который позволяет предотвратить новое радиоактивное загрязнение уже отдезактивированных участков. В этом плане дезактивацию следует вести в направлении от более загрязненных участков к менее загрязненным. Для дезактивации транспортных средств и другой самоходной техники целесообразно создание стационарных пунктов дезактивации с централизованным обеспечением техническими средствами, участками разборки техники, системами локализации и обработки образующихся радиоактивных отходов.
При проведении дезактивации зданий, сооружений, средств производства, транспортных средств с применением методов, вызывающих пылеобразование, требуется предварительное или одновременное увлажнение. Следует учитывать возможность перераспределения радиоактивного загрязнения в ходе дезактивации зданий и сооружений. В частности, при дезактивации кровель и стен (вертикальных поверхностей) мокрыми методами стекающие растворы могут привести к концентрированию радиоактивного загрязнения в отдельных местах на поверхности грунта, что потребует повторной его дезактивации, если она была проведена ранее.
Не менее важным мероприятием при ликвидации последствий радиационной аварии является сбор и захоронение (размещение) радиоактивных отходов.

В зависимости от применяемых методов дезактивации локализация отходов может быть достигнута следующими способами:
1.локализация образующихся объемов загрязненного грунта и других материалов непосредственно в транспортных средствах при дезактивации методами снятия поверхностного слоя грунта, щебня или всего объема мусора и т.д.;
2.локализация отходов, образующихся в ходе дезактивации механическими (дробеструйными или гидроабразивными) методами, путем отсоса образующейся пыли или пульпы;
3.локализация жидких отходов в специальных емкостях-сборниках;
4.локализация, как дополняющий дезактивацию технологический прием, осуществляемый ручными или механизированными методами при дезактивации, включающий разборку конструкций, а также механические и физико-химические способы.
На стационарных пунктах дезактивации должны быть задействованы системы очистки; схема очистных сооружений должна включать оборотное водопользование, системы сбора отходов, их отстоя, коагуляции, ионообменной сорбции, сбора и удаления шлаков, концентрирующих радиоактивность. Желательно, чтобы мероприятия позднего периода включали создание специальных предприятий по обработке большей части накопленных в ходе дезактивационных работ радиоактивных отходов в жидком и твердом виде, включая почву. Грунтовые могильники радиоактивных отходов должны быть расположены в местах, выбор которых определяется:
1.гидрогеологическими и другими природными характеристиками, позволяющими осуществлять длительное хранение отходов без опасности проникновения их в окружающую среду;
2.малой хозяйственной ценностью участков территории размещения могильников;
3.возможностью организации постоянного контроля за состоянием могильников и ограничения доступа к ним в ходе хозяйственной деятельности.

Места размещения могильников должны быть согласованы с местными органами Госсанэпиднадзора, обозначены на местности и ограждены, местоположение их должно быть нанесено на карту. Могильники должны быть изолированы сверху чистым слоем грунта с возможной его дальнейшей биологической рекультивацией.
Органы исполнительной власти субъектов Российской Федерации, местного самоуправления, органы управления ГОЧС на всех уровнях должны знать потенциально радиационно опасные объекты на подведомственной территории, степень их опасности, иметь прогноз возможных последствий аварий на этих объектах, предусмотреть необходимые мероприятия по ликвидации последствий радиационных аварий в планах действий по предупреждению и ликвидации чрезвычайных ситуаций.

6. Заключение

Итак, при правильном использовании и соблюдении всех мер безопасности, а также при безопасном захоронении отходов, атомные реакторы являются наиболее экологичным и перспективным методом получения энергии, поэтому отказаться от него или сократить его применение не представляется возможным.

Следовательно, необходимо обеспечивать:

1. Изоляцию РОО (в том числе и ядерного оружия) от крупных городов

3. Надежную охрану РОО (в том числе и ядерного оружия), ограничение доступа к РОО.

4. Разработку новых методов ликвидации последствий радиационных аварий

5. Обучение органов ликвидации и населения способам защиты от радиации, порядку эвакуации и др.

Эти и множество других мер помогут предотвратить большинство происшествий на РОО и избежать большого количества потерь при ЧС на РОО.

7. Литература и материалы.

Радиационно-опасные объекты (РОО). Радиационные аварии, их виды, динамика развития, основные опасности.

Радиационно-опасные объекты.

Объект, на котором хранят, перерабатывают, используют или на который транспортируют радиоактивные вещества, где при аварии или разрушении может произойти облучение ионизирующим излучением или радиоактивное загрязнение людей, сельскохозяйственных животных и растений, объектов народного хозяйства, а также окружающей природной среды, называют радиационно-опасным.

К радиационно-опасным объектам относятся предприятия ядерного топливного цикла (ЯТЦ) (предприятия по изготовлению ядерного топлива, предприятия по выработке электрической и тепловой энергии, предприятия по переработке и захоронению отходов), транспортные установки (надводные и подводные корабли), военные объекты (хранилища ядерных боеприпасов, полигоны по испытанию ядерного оружия, ракетные старты), научно-исследовательские организации (исследовательские реакторы, экспериментальные реакторы, исследовательские стенды), шахты по добыче урана.

Потенциальная опасность от наличия радиоактивных продуктов на объекте существенно зависит от напряженности параметров нормального технологического процесса и сопутствующих им физико-химических явлений. К таким параметрам, прежде всего, относятся давление и температура, при которых работают барьеры, удерживающие радиоактивные материалы в заданных границах. К внешним воздействиям, способным привести к разрушению барьеров на пути выхода радиоактивных веществ относятся сейсмическая активность и особенности геологической площадки, метеорологические условия, включающие ураган, обильные осадки и т.д., и вызванные человеческой деятельностью воздействия (например диверсии, взрывы на соседних предприятиях, ошибки в действиях персонала, способные привести к авариям с тяжелыми последствиями).

Радиационная авария – происшествие, приведшее к выходу (выбросу) радиоактивных продуктов и ионизирующих излучений за предусмотренные проектом пределы (границы) в количествах, превышающих установленные нормы безопасности.

Классификация аварий на РОО.

Классификация проводится по двум признакам: по типовым нарушениям нормальной эксплуатации и по характеру последствий для персонала, населения и окружающей среды. При анализе аварий их принято характеризовать цепочкой: исходное событие – пути протекания – последствия. Аварии, связанные с нарушениями нормальной эксплуатации, подразделяются на проектные, проектные с наибольшими последствиями и запроектные. Причинами проектных аварий являются исходные события, связанные с нарушением барьеров безопасности, предусмотренные проектом каждого реактора.

Первый тип аварии – нарушение первого барьера безопасности (нарушение герметичности оболочек тепловыделяющих элементов из-за нарушения температурного режима (перегрев) ТВЭЛов или механических повреждений).

Второй тип – нарушение первого и второго барьеров безопасности (при попадании радиоактивных продуктов в теплоноситель).

Третий тип – нарушение всех барьеров безопасности (при нарушенных первом и втором теплоноситель с радиоактивными продуктами деления удерживается от выхода в окружающую среду третьим барьером – защитной оболочкой реактора).

Причиной ядерной аварии может быть образование критической массы при перегрузке, транспортировке и хранении ТВЭЛов, нарушения контроля и управления цепной ядерной реакцией, которые могут привести к тепловым и ядерным взрывам.

В первые часы и сутки после аварии действие на людей загрязнения окружающей среды определяется внешним облучением от радиоактивного облака, радиоактивных выпадений на местности, внутренним облучением вследствие вдыхания радиоактивных веществ из облака, а также за счет загрязнения поверхности тела человека этими веществами.

Последствия аварии для животного мира (по данным аварии на ЧАЭС).

В первые дни после аварии животные получают до 150 – 20 000 бэр на щитовидную железу от йода-131. Это вызвало у них заболевания подобные человеческим. Внутреннее облучение многих млекопитающих привело к росту заболеваемости, преждевременной гибели, сокращению срока жизни, снижению плодовитости. Наблюдаются генетические последствия.

Последствия аварий для растительного мира (по данным аварии наЧАЭС).

Лесные, луговые и болотные растения имеют достаточно высокую радиоактивность даже при минимальном загрязнении территории радионуклидами. Воздействие радиации может привести к замедлению роста растений, снижению урожайности, увяданию, гибели, потере способности к воспроизводству. Возникают генетические нарушения

Радиационно-опасные объекты (РОО) - это объекты, при аварии на которых или при разрушении которых может произойти выход радиоактивных продуктов или ионизирующего излучения за предусмотренные проектом для нормальной эксплуатации значения, что может привести к массовому облучению людей, сельскохозяйственных животных и растений, а также радиоактивному загрязнению природной среды выше допустимых норм.

К типовым РОО относятся:

  • атомные станции;
  • предприятия по переработке отработанного ядерного топлива и захоронению радиоактивных отходов;
  • предприятия по изготовлению ядерного топлива;
  • научно-исследовательские и проектные организации, имеющие ядерные установки и стенды;
  • транспортные ядерные энергетические установки;
  • военные объекты.

Потенциальная опасность РОО определяется количеством радиоактивных веществ, которое может поступить в окружающую среду в результате аварии на РОО. А это в свою очередь зависит от мощности ядерной установки.

Радиационная авария - потеря управления источником ионизирующего излучения, вызванная неисправностью оборудования, неправильными действиями работников (персонала), стихийными бедствиями или иными причинами, которые могли привести или привели к облучению людей выше установленных норм или к радиоактивному загрязнению окружающей среды.

Особую опасность для людей представляют аварии на атомных электростанциях (АЭС). Вся опасность и тяжесть таких аварий состоит в том, что из ядерных реакторов выбрасываются в атмосферу радиоактивные вещества в виде мельчайших пылинок и аэрозолей. Под воздействием ветра радиоактивные вещества могут распространяться на значительные расстояния от места аварии. Выпадая из облаков на землю, эти вещества образуют зону радиоактивного загрязнения.

Обнаружить радиоактивные вещества можно только с помощью специальных приборов - рентгенметров (ДП-5А, ДП-5Б, ДП-5В и др.) и дозиметров (ДП-22В, ИД-1 и др.).

Описание состава и порядка пользования рентгенметром ДП-5А и дозиметром ДП-22В приведено в главе 2. В этой главе дадим сведения о рентгенметре ДП-5В и комплекте войсковых измерителей дозы ИД-1.

Измеритель мощности дозы (рентгенметр) ДП-5В (рис. 3.19) предназначен для измерения мощности экспозиционной дозы гамма-излучения на радиоактивно зараженной местности, контроля зараженности объектов и продуктов питания, а также обнаружения бета-излучения.

Рис. 3.19. Измеритель мощности дозы ДП-5В:
1 - блок детектирования; 2 - контрольный источник; 3 - поворотный экран; 4 - удлинительная штанга; 5 - тумблер подсвета шкалы микроамперметра; 6 - таблица допустимых значений заражения объектов; 7 - крышка футляра прибора; 8 - микроамперметр; 9 - переключатель поддиапазонов; 10 - кнопка сброса показаний; 11 - соединительный кабель; 12 - измерительный пульт; 13 - футляр; 14 - головные телефоны

В укладочном ящике прибора ДП-5В находятся: футляр, измерительный пульт с блоком детектирования, ремни, головные телефоны, удлинительная штанга, делитель напряжения, полиэтиленовые чехлы (10 шт.), комплект ЗИП, техническая документация.

При подготовке прибора к работе нужно:

  • подключить источник питания, соблюдая полярность, ручку переключателя установить в положение КОНТРОЛЬ РЕЖИМА, при этом стрелка прибора должна установиться в закрашенном секторе;
  • закрыть крышку отсека питания, пристегнуть к футляру ремни и разместить прибор на груди, подключить к нему головные телефоны;
  • экран блока детектирования установить в положение «К» (контроль). Ручку переключателя поддиапазонов последовательно установить в положение «х1000», «х100», «х10», «х1», «х0,1», при этом: на поддиапазонах «х1000», «х100» стрелка может не отклоняться, но в телефонах прослушиваются щелчки; на поддиапазоне «х10» в телефонах прослушиваются частые щелчки, показания прибора следует сравнить с показанием, записанным в формуляре; на поддиапазонах «х1», «х0,1» в телефонах прослушиваются частые щелчки и стрелка прибора должна зашкаливать;
  • установить экран в положение «Г», удлинительную штангу закрепить на ремне.

Для измерения мощности дозы на местности необходимо блок детектирования, закрепленный на удлинительной штанге, расположить перед собой на расстоянии вытянутой руки на высоте 70–100 см (вблизи 15–20 м не должно быть крупных объектов - бронетехники, зданий и т.д.). Установить переключатель поддиапазонов в положение, на котором стрелка прибора отклоняется от нулевого в пределах шкалы, и снять показания с прибора: в диапазоне 200 по нижней шкале, в диапазонах «х1000», «х100», «х10», «х1», «х0,1» по верхней шкале с умножением отсчета на множитель переключателя.

Комплект войсковых измерителей дозы ИД-1 (рис. 3.20) предназначен для измерения поглощенных доз гамма-нейтронного излучения. В состав комплекта входят 10 измерителей дозы и зарядное устройство ЗД-6. Диапазон измерения составляет от 20 до 500 рад. Масса комплекта в футляре - 2 кг.

Рис. 3.20. Комплект измерителей дозы ИД-1:
1 - измеритель дозы ИД-1 (10 шт.); 2 - гнездо для зарядного устройства; 3 - футляр; 4 - окуляр; 5 - держатель; 6 - защитная оправа; 7 - зарядное устройство ЗД-6; 8 - зарядно-контактное гнездо; 9 - ручка зарядно-контактного узла; 10 - поворотное зеркало

Радиоактивные излучения обладают способностью проникать через различные толщи материала и вызывать нарушения некоторых жизненных процессов в организме человека. Человек в момент воздействия радиоактивных излучений не получает телесных повреждений и не испытывает болевых ощущений. Однако в результате воздействия радиоактивных излучений у пораженных людей может развиться лучевая болезнь, приводящая к смертельному исходу.

При радиоактивном заражении живой организм в течение нескольких секунд получает дозу проникающей радиации, а доза внешнего облучения накапливается им в течение всего времени пребывания на зараженной территории.

Накопление дозы внешнего облучения в организме происходит неравномерно. Большая ее часть накапливается в первые часы и дни после выпадения радионуклидов, когда уровень радиации наиболее высокий. В первые сутки накапливается 50% суммарной дозы до полного распада радиоактивных веществ, за четверо суток - 60%. Поэтому особенно важно обеспечить защиту от радиации в первые четверо суток.

Доза облучения, полученная живым организмом в течение четырех суток подряд (в любом распределении по дням) называется однократной. При продолжительном облучении в организме наряду с процессами поражения происходят и процессы восстановления. В связи с этим суммарная доза облучения, вызывающая один и тот же эффект, при продолжительном многократном облучении более высокая, чем при однократном. Дозы, не приводящие к потере работоспособности при однократном и многократном облучении, следующие: однократная (в течение четырех суток) - 50 Р; многократная: в течение 10–30 суток - 100 Р, трех месяцев - 200 Р, в течение года - 300 Р.

Превышение указанной дозы вызывает заболевание лучевой болезнью. Лучевая болезнь протекает, как правило, в острой форме и в зависимости от однократной дозы облучения может быть разной степени тяжести: легкой (100–200 Р), средней (200–400 Р), тяжелой (400–600 Р) и крайне тяжелой (свыше 600 Р).

По многочисленным данным, собранным в Хиросиме и Нагасаки, отмечены следующие степени поражения людей после воздействия на них однократных доз излучения:

  • 1100–5000 Р - 100%-ная смертность в течение одной недели;
  • 550–750 Р - смертность почти 100%, небольшое количество людей, оставшихся в живых, выздоравливает в течение примерно шести месяцев;
  • 400–550 Р - все пораженные заболевают лучевой болезнью, смертность около 50%;
  • 270–330 Р - почти все пораженные заболевают лучевой болезнью, смертность 20%;
  • 180–220 Р - 50% пораженных заболевают лучевой болезнью;
  • 130–170 Р - 25% пораженных заболевают лучевой болезнью;
  • 80–120 Р - 10% пораженных чувствуют недомогание и усталость без серьезной потери трудоспособности;
  • 0–50 Р - отсутствие признаков поражения.

Эффективность воздействия на организм человека однократной дозы излучения с течением времени после облучения составляет: через одну неделю - 90%, через три недели - 60%, через один месяц - 50%, через три месяца - 12%.

Течение острой лучевой болезни подразделяется на четыре периода. Первый период начинается сразу после облучения и продолжается от нескольких часов до двух-трех суток. При этом наблюдаются угнетенное состояние, рвота, отсутствие аппетита, покраснение слизистых оболочек. Второй период (скрытый или мнимого благополучия) продолжается в зависимости от полученной дозы облучения от трех до 14 суток. В это время внешние признаки болезни исчезают и пораженные не отличаются от здоровых, хотя патологические изменения в кроветворных органах прогрессируют. В третьем периоде (разгар лучевой болезни) развиваются все типичные признаки болезни. В четвертом периоде (разрешения) наступает либо выздоровление, либо гибель пораженного.

Лучевая болезнь легкой степени характеризуется недомоганием, общей слабостью, головными болями, небольшим снижением лейкоцитов в крови. Все пораженные выздоравливают без лечения.

Лучевая болезнь средней тяжести проявляется в более тяжелом недомогании, расстройстве функций нервной системы, рвоте. Количество лейкоцитов снижается более чем наполовину. При отсутствии осложнений люди выздоравливают через несколько месяцев. При осложнениях может наступить гибель до 20% пораженных.

При лучевой болезни тяжелой степени отмечаются тяжелое общее состояние, сильные головные боли, рвота, понос, кровоизлияния в слизистые оболочки и кожу, иногда потеря сознания. Количество лейкоцитов и эритроцитов в периферической крови резко снижается, появляются осложнения. Без лечения смертельные исходы наблюдаются в 50% случаев.

Лучевая болезнь крайне тяжелой степени без лечения заканчивается смертельным исходом в 80–100% случаев.

При наружном заражении радиоактивными веществами наблюдаются «бета-ожоги» кожных покровов. У людей наиболее часто отмечаются поражения кожи на руках, голове, в области шеи, поясницы; у животных - на спине, а при поедании травы с загрязненного пастбища - на морде. Тяжесть поражения зависит от продолжительности контакта радионуклидов с поверхностью тела человека, животного. Допустимая степень радиоактивного заражения поверхности тела человека 20 мР/ч, животного - 100 мР/ч при контакте в течение суток.

Внутреннее поражение людей радиоактивными веществами может произойти при вдыхании воздуха и приеме пищи и воды. Большая часть радионуклидов проходит кишечник транзитом и выделяется из организма. При этом они вызывают радиационное поражение слизистой оболочки желудочно-кишечного тракта, что приводит к расстройству функций органов пищеварения. Другая часть изотопов, биологически наиболее активных, к которым в первую очередь относятся йод-131, стронций-90, цезий-137, обладает высокой радиотоксичностью и почти полностью всасывается в кишечник, распределяясь по органам и тканям организма.

Токсичность радионуклидов зависит от вида энергии излучения, периода полураспада, физико-химических свойств вещества, в составе которого радионуклид попадает в организм; типа распределения по тканям и органам; от скорости выведения из организма.

Органы и ткани, в которых происходит избирательная концентрация радионуклида, вследствие чего они подвергаются наибольшему облучению и повреждению, называются критическими . Так, наибольшее количество радиоактивного йода концентрируется в щитовидной железе. Это приводит к ее воспалению, некрозу, полному прекращению функции, что является причиной истощения и гибели организма.

Радиоизотопы стронция концентрируются в костной ткани, нарушая функцию кроветворения костного мозга. Цезий-137 равномерно распределяется в мышечной ткани и поэтому менее опасен, чем радиоизотопы йода и стронция. Для всех радионуклидов критическими органами являются кроветворная система и половые железы.

Попавшие в организм радиоактивные изотопы выводятся из него. Период, в течение которого из организма выводится половина поступившего количества элемента, называется биологическим периодом полувыведения . Убыль радиоактивных изотопов из организма ускоряется за счет радиоактивного распада. Следовательно, уменьшение радионуклидов в организме происходит по биологическим закономерностям и по закону радиоактивного распада. Большая часть радиоактивных веществ выделяется из организма с калом, меньшая с мочой. Биологически активные элементы выделяются с молоком (с 1 л молока выделяется 1% поступившего за сутки йода-131, 0,6–0,9 изотопов стронция и бария, до 2% цезия-137).

Таким образом, при аварии на АЭС следует защищаться от двух видов облучения: внешнего и внутреннего. Первое возникает в результате воздействия на человека излучений, испускаемых радиоактивными веществами, выпавшими на земную поверхность. Второе - результат попадания радиоактивных веществ внутрь организма при вдыхании воздуха и приеме пищи и воды.

В случае аварии на АЭС и угрозе радиоактивного заражения местности подается предупредительный сигнал гражданской обороны «Внимание всем!» в виде сирен, прерывистых гудков предприятий и специальных транспортных средств. По радио и телевидению передается сообщение местных органов власти или гражданской обороны.

Противорадиационная защита включает в себя использование коллективных и индивидуальных средств защиты, соблюдение режима поведения на зараженной радиоактивными веществами территории, защиту продуктов питания и воды от радиоактивного заражения, использование медицинских средств индивидуальной защиты, определение уровней заражения территории, дозиметрический контроль и экспертизу заражения радиоактивными веществами продуктов питания и воды.

При сообщении о радиационной опасности необходимо выполнить следующие мероприятия:

  1. 1. Укрыться в жилом доме или служебном помещении. Важно знать, что стены деревянного дома ослабляют ионизирующее излучение в 2 раза, кирпичного - в 10 раз, заглубленные укрытия (подвалы) с деревянным покрытием - в 7 раз, а с кирпичным или бетонным покрытием - в 40–100 раз.
  2. 2. Принять меры от проникновения в помещение (дом) радиоактивных веществ с воздухом, для чего закрыть форточки, вентиляционные люки, отдушины, уплотнить рамы и дверные проемы.
  3. 3. Создать запас питьевой воды и перекрыть краны. Накрыть колодцы пленкой или крышкой.
  4. 4. Провести профилактический прием препаратов стабильного йода: таблеток йодистого калия или водно-спиртового раствора йода. Йодистый калий следует принимать после еды вместе с чаем или водой 1 раз в день в течение семи суток по одной таблетке (0,125 г) на один прием. Водно-спиртовой раствор йода нужно принимать после еды 3 раза в день в течение семи суток по 3–5 капель на стакан воды. Важно знать, что прием стабильного йода за 6ч (и менее) до подхода радиоактивного облака или выпадения радиоактивных веществ обеспечивает полную защиту. Если принять его в начале облучения, то эффективность несколько уменьшается, а через 6 часов снижается наполовину.
  5. 5. Подготовиться к возможной эвакуации.
  6. 6. Постараться соблюдать следующие правила радиационной безопасности и личной гигиены:
  • использовать в пищу только консервированное молоко и пищевые продукты, хранившиеся в закрытых помещениях и не подвергшиеся радиоактивному загрязнению;
  • не пить молоко от коров, которые продолжают пастись на загрязненных полях, и не употреблять овощи, которые росли в открытом грунте и были сорваны после начала поступления радиоактивных веществ в окружающую среду;
  • не пить воду из открытых источников и водопровода;
  • принимать пищу только в закрытых помещениях, при этом тщательно мыть руки с мылом перед едой и полоскать рот 0,5%-ным раствором питьевой соды;
  • избегать длительных передвижений по загрязненной территории, не ходить в лес и воздержаться от купания в открытом водоеме;
  • входя в помещение с улицы, оставлять «грязную» обувь на лестничной площадке или на крыльце.
  1. 7. При передвижении по открытой местности защищать органы дыхания противогазом, респиратором, носовым платком, бумажной салфеткой или марлевой повязкой (фильтрующая способность носового платка, бумажной салфетки и марлевой повязки значительно повышается при смачивании водой). Для защиты кожи и волосяного покрова следует использовать защитные костюмы, а если их нет - любые предметы одежды (головные уборы, косынки, накидки, перчатки, резиновые сапоги).
  2. 8. При оказании первой доврачебной помощи на территории радиоактивного заражения в первую очередь следует выполнять те мероприятия, от которых зависит сохранение жизни пораженного. Затем необходимо устранить или уменьшить внешнее гамма-облучение, для чего используются защитные сооружения: убежища, заглубленные помещения, кирпичные, бетонные и другие здания. Чтобы предотвратить дальнейшее воздействие радиоактивных веществ на кожу и слизистые оболочку, проводят частичную санитарную обработку. Частичная санитарная обработка проводится путем обмывания чистой водой или обтирания влажными тампонами открытых участков кожи. Пораженному промывают глаза, дают прополоскать рот. Затем, надев на пораженного респиратор, ватно-марлевую повязку или закрыв его рот и нос полотенцем, платком, шарфом, проводят частичную дезактивацию его одежды. При этом учитывают направление ветра, чтобы сметаемая с одежды пыль не попадала на других. При попадании радиоактивных веществ внутрь организма промывают желудок, дают адсорбирующие вещества (активированный уголь). При появлении тошноты принимают противорвотное средство. В целях профилактики инфекционных заболеваний рекомендуется принимать противобактериальные средства.
  3. 9. При эвакуации после прибытия в безопасный район необходимо пройти полную санитарную обработку и дозиметрический контроль. Санитарная обработка заключается в тщательном обмывании всего тела водой с мылом. Обычно она проводится в местных банях, душевых павильонах, санитарных пропускниках, на специально организованных для этого санитарно-обмывочных пунктах, а в теплое время года и в незараженных проточных водоемах. Дозиметрический контроль осуществляется как перед началом санитарной обработки, так и после нее. Если результат оказался неудовлетворительным, санитарную обработку повторяют. Одежда и обувь при этом подвергаются частичной или полной дезактивации. Частичная дезактивация заключается в вытряхивании и выколачивании одежды и обуви с использованием щеток, веников, палок. Полная дезактивация одежды и обуви проводится на пунктах специальной обработки, оснащенных специальными установками и приборами. После дезактивации каждую вещь подвергают дозиметрическому контролю, и если окажется, что уровень загрязнения выше допустимых норм, работа проводится вторично. Следует отметить, что работа по дезактивации одежды и обуви проводится в надетых средствах защиты кожи и органов дыхания (в противогазах, респираторах, ватно-марлевых повязках, защитных костюмах).
  4. 10. Продовольствие и вода также подлежат дезактивации. При этом в зависимости от степени заражения и характера радиоактивных веществ, применяется тот или иной метод дезактивации - отстаивание, фильтрование, перегонка. Воду лучше всего пропустить через фильтры, изготавливаемые из подручных материалов - почвы различных видов, песка, мелкого гравия, угля. Продовольствие дезактивируется путем обработки или замены зараженной тары. Жидкие продукты дезактивируют путем длительного отстаивания, после чего верхний незараженный слой сливают в чистую посуду. Готовая пища (суп, щи, каша и др.) дезактивации не подлежит. Ее следует закопать в землю.

Приведенные рекомендации не исчерпывают всех мер противорадиационной защиты. Однако соблюдение перечисленных правил или хотя бы части из них позволяет значительно уменьшить риск неблагоприятных последствий аварий на объектах с выбросом радиоактивных веществ.

Воздействие ионизирующего излучения на живые организмы

Радиоактивные вещества и их активность.

Радиоактивные вещества принято оценивать по их активности.

Активность определяется числом распадов, происходящих в данном количестве веще-

ства за единицу времени. Активность изотопа чаще определяется периодом полураспада.

Период полураспада радиоактивного изотопа - промежуток времени, за который

число радиоактивных атомов данного изотопа уменьшается вдвое. Так, для урана-238 он

составляет приблизительно 4,5 млрд лет, а для полония-212 – около 3 · 10-7 с.

Наиболее опасны те радиоактивные вещества, период полураспада которых близок к

продолжительности жизни человека. Большую опасность для здоровья человека предста-

вляют наиболее распространенные в природе изотопы, например, стронций-90 (имеющий

период полураспада 28 лет) и цезий-137 (период полураспада 33 года). Из короткоживущих радиоактивных изотопов наиболее распространен радон-222, составляющий 1/3 естественной радиации. Период его полураспада равен 3,8 суток.

В системе СИ активность измеряется в беккерелях (Бк). 1 Бк равен одному распаду

ядра в секунду. Часто пользуются внесистемной единицей – кюри (Ки); 1 Ки = 3,7 · 1010 Бк.

Активность в ряде случаев измеряют в милликюри (мКи), составляющей 10-3 кюри, и

микрокюри (мкКи) = 10-6кюри.

Биологическое действие ионизирующих излучений на организм имеет ряд особенностей:

Неся в себе огромную опасность для здоровья и жизни, оно неощутимо человеком;

Существует скрытый (инкубационный) период проявления действия ионизирующего излучения, который может быть весьма продолжительным;

Одним из видов последствий облучения являются так называемые генетические

эффекты – разнообразные наследственные заболевания, возникающие в результате мутаций (изменений) в половых клетках;

Получаемые человеком дозы излучений накапливаются в организме (кумулятивный

эффект), поэтому вероятность возникновения заболеваний пропорциональна длительности воздействия радиации;

Наиболее чувствительны к облучению дети в период роста;

Степень чувствительности к облучению различных органов и тканей человека

неодинакова;

Радиочувствительность живых организмов также весьма различна (смертельная

доза для бактерий в 100 раз превышает дозу для млекопитающих).

Радиационно опасные объекты и аварии на них

Ядерные технологии несут в себе опасность радиационного загрязнения окружающей

среды и лучевого воздействия на живые организмы. Эксплуатация ядерных объектов показала, что, несмотря на все принимаемые меры, на них нельзя исключить возможность аварий, в т. ч. и с выбросом радиоактивных веществ в окружающую среду.



Радиационная авария - нарушение пределов безопасной эксплуатации ядерно-энер-

гетической установки, оборудования или устройства, при которых произошел выход радиоактивных продуктов или ионизирующего излучения за предусмотренные проектом пределы их безопасной эксплуатации, приводящий к облучению населения и загрязнению окружающей среды. Причинами аварии могут быть нарушения барьеров безопасности, предусмотренных проектом реактора; образование критической массы при перегрузке, транспортировке и хранении ТВЭлов; нарушение контроля и управления цепной ядерной реакцией.

Радиационно опасные объекты (РОО) - научные, народнохозяйственные (промы-

шленные) или оборонные объекты, при разрушениях которых могут произойти массовые

радиационные поражения людей, животных и растений, а также заражение среды.

Радиационные аварии и их классификации

В зависимости от вида радиационно опасного объекта, масштабов и опасности послед-

ствий существует несколько различных классификаций радиационных аварий, происше-

ствий и инцидентов. В табл. 8 приведена одна из них, принятая Международным агентством по атомной энергии (МАГАТЭ) для оценки происшествия.

Таблица 8 Международная шкала оценки происшествий на АЭС, адаптированная для России

Радиационно опасные объекты (РОО) - это объекты, при аварии на которых или при разрушении которых может произойти выход радиоактивных продуктов или ионизирующего излучения за предусмотренные проектом для нормальной эксплуатации значения, что может привести к массовому облучению людей, сельскохозяйственных животных и растений, а так же радиоактивному загрязнению природной среды выше допустимых норм.

К типовым РОО относятся:

  • ? атомные станции;
  • ? предприятия по переработке отработанного ядерного топлива и захоронению радиоактивных отходов;
  • ? предприятия по изготовлению ядерного топлива;
  • ? научно-исследовательские и проектные организации, имеющие ядерные установки и стенды;
  • ? транспортные ядерные энергетические установки;
  • ? военные объекты.

Потенциальная опасность РОО определяется количеством радиоактивных веществ, которое может поступить в окружающую среду в результате аварии на РОО. А это в свою очередь зависит от мощности ядерной установки.

Радиационная авария - потеря управления источником ионизирующего излучения, вызванная неисправностью оборудования, неправильными действиями работников (персонала), стихийными бедствиями или иными причинами, которые могли привести или привели к облучению людей выше установленных норм или к радиоактивному загрязнению окружающей среды.

Особую опасность для людей представляют аварии на атомных электростанциях (АЭС). Вся опасность и тяжесть таких аварий состоит в том, что из ядерных реакторов выбрасываются в атмосферу радиоактивные вещества в виде мельчайших пылинок и аэрозолей. Под воздействием ветра радиоактивные вещества могут распространяться на значительные расстояния от места аварии. Выпадая из облаков на землю, эти вещества образуют зону радиоактивного загрязнения.

Радиоактивные излучения обладают способностью проникать через различные толщи материала и вызывать нарушения некоторых жизненных процессов в организме человека. Человек в момент воздействия радиоактивных излучений не получает телесных повреждений и не испытывает болевых ощущений. Однако в результате воздействия радиоактивных излучений у пораженных людей может развиться лучевая болезнь, приводящая к смертельному исходу.

При радиоактивном заражении живой организм в течение нескольких секунд получает дозу проникающей радиации, а доза внешнего облучения накапливается им в течение всего времени пребывания на зараженной территории.

Накопление дозы внешнего облучения в организме происходит неравномерно. Большая ее часть накапливается в первые часы и дни после выпадения радионуклидов, когда уровень радиации наиболее высокий. В первые сутки накапливаются 50% суммарной дозы до полного распада радиоактивных веществ, за четверо суток - 60%. Поэтому особенно важно обеспечить защиту от радиации в первые четверо суток.

Доза облучения, полученная живым организмом в течение четырех суток подряд (в любом распределении по дням) называется однократной. При продолжительном облучении в организме наряду с процессами поражения происходят и процессы восстановления. В связи с этим суммарная доза облучения, вызывающая один и тот же эффект, при продолжительном многократном облучении более высокая, чем при однократном. Дозы, не приводящие к потере работоспособности при однократном и многократном облучении, следующие: однократная (в течение четырех суток) - 50 Р; многократная: в течение 10- 30 суток - 100 Р, 3-х месяцев - 200 Р, в течение года - 300 Р.

Превышение указанной дозы вызывает заболевание лучевой болезнью. Лучевая болезнь протекает, как правило, в острой форме и в зависимости от однократной дозы облучения может быть разной степени тяжести: легкой (100-200 Р), средней (200-400 Р), тяжелой (400-600 Р) и крайне тяжелой (свыше 600 Р).

Лучевая болезнь легкой степени характеризуется недомоганием, общей слабостью, головными болями, небольшим снижением лейкоцитов в крови. Все пораженные выздоравливают без лечения.

Лучевая болезнь средней тяжести проявляется в более тяжелом недомогании, расстройстве функций нервной системы, рвоте. Количество лейкоцитов снижается более чем наполовину. При отсутствии осложнений люди выздоравливают через несколько месяцев. При осложнениях может наступить гибель до 20% пораженных.

При лучевой болезни тяжелой степени отмечаются тяжелое общее состояние, сильные головные боли, рвота, понос, кровоизлияния в слизистые оболочки и кожу, иногда потеря сознания. Количество лейкоцитов и эритроцитов в периферической крови резко снижается, появляются осложнения. Без лечения смертельные исходы наблюдаются в 50% случаев.

Лучевая болезнь крайне тяжелой степени без лечения заканчивается смертельным исходом в 80-100% случаев.

При наружном заражении радиоактивными веществами наблюдаются «бета-ожоги» кожных покровов. У людей наиболее часто отмечаются поражения кожи на руках, голове, в области шеи; поясницы;

у животных - на спине, а при поедании травы с загрязненного пастбища - на морде. Тяжесть поражения зависит от продолжительности контакта радионуклидов с поверхностью тела человека, животного. Допустимая степень радиоактивного заражения поверхности тела человека 20 мР/ч, животного - 100 мР/ч при контакте в течение суток.

Внутреннее поражение людей радиоактивными веществами может произойти при вдыхании воздуха и приеме пищи и воды. Большая часть радионуклидов проходит кишечник транзитом и выделяется из организма. При этом они вызывают радиационное поражение слизистой оболочки желудочно-кишечного тракта, что приводит к расстройству функций органов пищеварения. Другая часть изотопов, биологически наиболее активных, к которым в первую очередь относятся йод-131, стронций-90, цезий-137, обладает высокой радиотоксичностью и почти полностью всасывается в кишечник, распределяясь по органам и тканям организма.

Таким образом, при аварии на АЭС следует защищаться от двух видов облучения: внешнего и внутреннего. Первое возникает в результате воздействия на человека излучений, испускаемых радиоактивными веществами, выпавшими на земную поверхность. Второе - результат попадания радиоактивных веществ внутрь организма при вдыхании воздуха и приеме пищи и воды.

В случае аварии на АЭС и угрозе радиоактивного заражения местности подается предупредительный сигнал гражданской обороны «Внимание всем!» в виде сирен, прерывистых гудков предприятий и специальных транспортных средств. По радио и телевидению передается сообщение местных органов власти или гражданской обороны.

Противорадиационная защита включает в себя использование коллективных и индивидуальных средств защиты, соблюдение режима поведения на зараженной радиоактивными веществами территории, защиту продуктов питания и воды от радиоактивного заражения, использование медицинских средств индивидуальной защиты, определение уровней заражения территории, дозиметрический контроль и экспертизу заражения радиоактивными веществами продуктов питания и воды.

При сообщении о радиационной опасности необходимо выполнить следующие мероприятия.

  • 1. Укрыться в жилом доме или служебном помещении. Принять меры от проникновения в помещение (дом) радиоактивных веществ с воздухом, для чего закрыть форточки, вентиляционные люки, отдушины, уплотнить рамы и дверные проемы.
  • 2. Создать запас питьевой воды и перекрыть краны. Накрыть колодцы пленкой или крышкой.
  • 3. Провести профилактический прием препаратов стабильного йода: таблеток йодистого калия или водно-спиртового раствора йода. Йодистый калий следует принимать после еды вместе с чаем или водой 1 раз в день в течение 7 суток по одной таблетке (0,125 г) на один прием. Водно-спиртовой раствор йода нужно принимать после еды 3 раза в день в течение 7 суток по 3-5 капель на стакан воды. Важно знать, что прием стабильного йода за 6 ч и менее до подхода радиоактивного облака или выпадания радиоактивных веществ обеспечивает полную защиту. Если принять его в начале облучения, то эффективность несколько уменьшается, а через 6 ч снижается наполовину.
  • 4. Подготовиться к возможной эвакуации.
  • 5. Постараться соблюдать следующие правила радиационной безопасности и личной гигиены:

S использовать в пищу только консервированное молоко и пищевые продукты, хранившиеся в закрытых помещениях и не подвергшиеся радиоактивному загрязнению;

S не пить молоко от коров, которые продолжают пастись на загрязненных полях, и не употреблять овощи, которые росли в открытом грунте и были сорваны после начала поступления радиоактивных веществ в окружающую среду;

S не пить воду из открытых источников и водопровода;

S принимать пищу только в закрытых помещениях, при этом тщательно мыть руки с мылом перед едой и полоскать рот 0,5%-ным раствором питьевой соды;

S избегать длительных передвижений по загрязненной территории, не ходить в лес и воздержаться от купания в открытом водоеме;

S входя в помещение с улицы, оставлять «грязную» обувь на лестничной площадке или на крыльце.

  • 6. При передвижении по открытой местности защищать органы дыхания противогазом, респиратором, носовым платком, бумажной салфеткой или марлевой повязкой (фильтрующая способность носового платка, бумажной салфетки и марлевой повязки значительно повышается при смачивании водой). Для защиты кожи и волосяного покрова следует использовать защитные костюмы, а если их нет - любые предметы одежды (головные уборы, косынки, накидки, перчатки, резиновые сапоги).
  • 7. При оказании первой доврачебной помощи на территории радиоактивного заражения в первую очередь следует выполнять те мероприятия, от которых зависит сохранение жизни пораженного. Затем необходимо устранить или уменьшить внешнее гамма-облучение, для чего используются защитные сооружения: убежища, заглубленные помещения, кирпичные, бетонные и другие здания. Чтобы предотвратить дальнейшее воздействие радиоактивных веществ на кожу и слизистые оболочку, проводят частичную санитарную обработку. Частичная санитарная обработка проводится путем обмывания чистой водой или обтирания влажными тампонами открытых участков кожи. Пораженному промывают глаза, дают прополоскать рот. Затем, надев на пораженного респиратор, ватно-марлевую повязку или закрыв его рот и нос полотенцем, платком, шарфом, проводят частичную дезактивацию его одежды. При этом учитывают направление ветра, чтобы обметываемая с одежды пыль не попадала на других. При попадании радиоактивных веществ внутрь организма промывают желудок, дают адсорбирующие вещества (активированный уголь). При появлении тошноты принимают противорвотное средство. В целях профилактики инфекционных заболеваний рекомендуется принимать противо- бактериальные средства.
  • 8. При эвакуации после прибытия в безопасный район необходимо пройти полную санитарную обработку и дозиметрический контроль. Санитарная обработка заключается в тщательном обмывании всего тела водой с мылом. Обычно она проводится в местных банях, душевых павильонах, санитарных пропускниках, на специально организованных для этого санитарно-обмывочных пунктах, а в теплое время года и в незараженных проточных водоемах. Дозиметрический контроль осуществляется как перед началом санитарной обработки, так и после нее. Если результат оказался неудовлетворительным, санитарную обработку повторяют. Одежда и обувь при этом подвергается частичной или полной дезактивации. Частичная дезактивация заключается в вытряхивании и выколачивании одежды и обуви с использованием щеток, веников, палок. Полная дезактивация одежды и обуви проводится на пунктах специальной обработки, оснащенных специальными установками и приборами. После дезактивации каждую вещь подвергают дозиметрическому контролю, и если окажется, что уровень загрязнения выше допустимых норм, работа проводится вторично. Следует отметить, что работа по дезактивации одежды и обуви проводится в надетых средствах защиты кожи и органов дыхания (противогазах, респираторах, ватно-марлевых повязках, защитных костюмах).
  • 9. Продовольствие и вода также подлежат дезактивации. При этом в зависимости от степени заражения и характера радиоактивных веществ, применяется тот или иной метод дезактивации - отстаивание, фильтрование, перегонка. Воду лучше всего пропустить через фильтры, изготавливаемые из подручных материалов - почвы различных видов, песка, мелкого гравия, угля. Продовольствие дезактивируется путем обработки или замены зараженной тары. Жидкие продукты дезактивируют путем длительного отстаивания, после чего верхний незаряженный слой сливают в чистую посуду. Готовая пиша (суп, щи, каша и др.) дезактивации не подлежит. Ее следует закопать в землю.

Конечно, эти рекомендации не исчерпывают всех мер противорадиационной защиты. Однако соблюдение перечисленных правил или хотя бы части из них позволяет значительно уменьшить риск неблагоприятных последствий аварий на объектах с выбросом радиоактивных веществ.

Вопросы и задания

  • 1. Какие объекты относятся к пожароопасным?
  • 2. Перечислите основные и вторичные поражающие факторы пожара.
  • 3. Какие принимают меры по предотвращению пожаров?
  • 4. Какие в настоящее время используются средства пожарной сигнализации? Дайте их краткую характеристику.
  • 5. Охарактеризуйте спринклерные и дренчерные установки противопожарной автоматики.
  • 6. Какие противопожарные средства используются для тушения пожара? Кратко охарактеризуйте их.
  • 7. Как обследовать задымленное помещение?
  • 8. Какие объекты относятся к взрывоопасным?
  • 9. Какие основные поражающие факторы взрыва?
  • 10. Какие принципы предотвращения взрывов на производственных объектах вы знаете?
  • 11. Какие мероприятия проводятся при ликвидации последствий взрывов?
  • 12. Какие объекты относятся к гидродинамически опасным?
  • 13. Что значит гидродинамическая авария?
  • 14. Чем характеризуется катастрофическое затопление?
  • 15. Как проводится эвакуация и спасение населения при катастрофическом затоплении?
  • 16. Какие объекты относятся к химически опасным?
  • 17. Дайте характеристику наиболее распространенным ядовитым веществам, используемым в промышленном производстве и экономике.
  • 18. Каковы признаки отравления хлором (аммиаком, синильной кислотой, фосгеном, окисью углерода, ртутью)?
  • 19. Перечислите основные меры зашиты персонала и населения при авариях на химически опасных объектах.
  • 20. Какой существует порядок действий персонала и населения при получении ими информации об аварии и опасности химического заражения?
  • 21. Как повысить защитные свойства дома от проникновения ядовитых веществ?
  • 22. Какие правила следует соблюдать при выходе из зоны химического заражения?
  • 23. Как оказать первую помощь пострадавшим от воздействия хлором (аммиаком, синильной кислотой, фосгеном, окисью углерода, ртутью)?
  • 24. Что представляет собой дегазация? Какие способы дегазации вы знаете и в чем их суть?
  • 25. Какие объекты являются радиационно опасными?
  • 26. Что значит радиационная авария? Каковы ее последствия?
  • 27. Какие мероприятия необходимо выполнить при получении информации о радиационной опасности?
  • 28. Какие правила радиационной безопасности и личной гигиены следует соблюдать при радиоактивном заражении местности?
  • 29. Какие существуют методы дезактивации продовольствия и воды?
  • 30. Оцените опасные в техногенном отношении районы в Вашем городе (поселке).