Пример систематической и случайной ошибки. Систематические и случайные ошибки

Все ошибки, которые имеют место при прямых измерениях, можно разделить на три основные категории: систематические, случайные и грубые погрешности (или промахи).
1. Систематические ошибки - это ошибки, которые постоянно вносятся в измерения, которые часто известны заранее и от которых можно основном избавиться, если тщательно продумать эксперимент.

Систематические погрешности включают в себя методические и инструментальные (приборные) погрешности измерений. Методические погрешности называются недостатками применяемого метода измерений, несовершенством теории физического явления и неточностью расчетной формулы, используемой для нахождения величины; что измеряется.
Суть таких ошибок легко понять из следующих примеров.
а) В чашечно ртутном барометре при том же атмосферном давлении ртуть в трубке устанавливается на разной высоте при различных температурах окружающей среды. При измерении давления с помощью такого барометра допускается систематическая ошибка, причина которой - разница в коэффициентах линейного расширения ртути и латуни, из которой изготовлена шкала. Эта ошибка легко может быть подсчитана и исключена.
б) Электроизмерительные приборы, термометры, весы и многие другие приборов вносят систематические ошибки в измерения, если в них смещена нулевая точка.
в) Систематические ошибки могут быть связаны со свойствами самого объекта измерения. Эти ошибки нельзя учесть заранее, но при рациональном проведении измерений такие ошибки могут быть переведены в разряд случайных.
Пример. В работе по определению коэффициента поверхностного натяжения жидкости приходится измерять диаметр капилляра, в разных местах может быть различным. Ошибку можно уменьшить, измеряя диаметр различных участков капилляра и взяв среднее из полученных измерений. Таким образом, эта систематическая ошибка перейдет в разряд случайных.
2. Случайные ошибки заранее устранить нельзя. Эти ошибки связаны с субъективными особенностями наблюдателя, с несовершенством измерительных приборов, с изменениями окружающих условий во время опыта. Случайные ошибки одинаково вероятны, как в сторону увеличения, так и в сторону уменьшения значения величины, что измеряется. Уменьшить их влияние можно многократным повторением измерений, а в некоторых случаях изменением условий опыта.
Пример. При определении коэффициента внутреннего трения жидкости по методу Стокса необходимо знать скорость падения шарика известного диаметра в данной жидкости. Эта скорость? определяется по времени t, за который шарик при равномерном движении проходит в жидкости известную расстояние s:.
Предположим, что s в нашей установке порядка 20 - 30 см, а t измерениями равен 40-50 секунд. Если для определения размеров s и t, взять сантиметровый масштаб линейки и часы с минутной стрелкой, то явно наши измерения будут очень грубые. На первый взгляд кажется, что точность измерения величины? будет непрерывно повышаться с увеличением точности используемых измерительных приборов - масштабной линейки и секундомера. Однако это будет иметь место только до некоторого момента, начиная с которого последующее увеличение точности приборов перестанет уменьшать ошибку измерения скорости, обусловленное в данном случае ошибкой, что делается наблюдателем (всегда существует некий разрыв во времени между моментом прохождения шариком соответствующей деления шкалы и моментом нажатия кнопки секундомера). При таких условиях эксперимента дальнейшего уменьшения ошибки в измерении? можно достичь только путем увеличения числа измерений и обработки их результатов (тщательного анализа проделанных измерений).
Стоит заметить, что точность определения? по значениям s и t может быть увеличена за счет изменения условий опыта.
Например, очевидно, что при увеличении в несколько раз расстоянии s, во столько же вместе увеличится и время t и несмотря на то, что ошибка, что делается при их измерении, остается прежней по абсолютной величине, влияние этой ошибки при определении скорости уменьшается.
Известно, что любой измерительный прибор или инструмент имеет свою предельную точность, обусловленную его конструкцией и качеством изготовления. При правильном выборе условий эксперимента и грамотного использования прибора случайный разброс результатов измерений, проведенных с помощью этого прибора, должен быть значительно меньше предельной ошибки, обусловленной конструкцией и указанной в паспорте прибора. Чтобы убедиться в этом в каждом конкретном случае, необходимо сделать несколько измерений, найти среднюю ошибку (по правилам, указанным ниже) и сравнить ее с паспортной. Если случайный разброс действительно окажется значительно меньше паспортной ошибки, в дальнейшем можно измерения проделывать один раз и считать ошибку соответствии с паспортными данными прибора.
Часто для сравнения точности измерений с точностью прибора бывает необходимо проделать большое число измерений. Если при этом в измерениях наблюдается воспроизведения в пределах точности прибора, то при исчислении погрешности следует учитывать только точность прибора.
Если случайные ошибки даже при большом числе измерений значительно превышают паспортную погрешность прибора (например, при изменчивости состояния окружающей среды, невозможности точно произвести отсчет и т.п.), и устранить причины этих отклонений невозможно, можно заменить прибор менее точным, отвечающего конкретным условиям эксперимента.
При выборе метода оценки погрешности измерений необходимо прежде всего осознать, идет ли речь о случайной погрешности измерений (случайном разбросе), либо об ошибке, внесенную приборами. Если решающую роль играют случайные ошибки, применяются статистические методы обработки результатов измерений. Если ошибка опыта определяется точностью приборов, подсчитывается предельная ошибка метода.
Стоит заметить, что размер средней случайной ошибки указывает лишь на качество измерений, но не характеризует точность метода, потому что результат может содержать систематическую ошибку.
Расчет случайных погрешностей делается методами теории вероятностей и математической статистики.
3. Грубая ошибка или промах - это погрешность, существенно превышает ожидаемую при данных условиях. Она может быть сделана в результате неправильной записи показаний прибора, ошибки экспериментатора с электроинструментом (например, при измерении длины линейкой один из концов предмета оказался не совмещенным с нулевой делением), может быть связана с неисправностью измерительной аппаратуры или с резким изменением условий измерений. Иногда промахи можно обнаружить, повторяя измерение в несколько отличных условиях, или анализируя результаты (как будет показано далее). Обнаружены промахи нужно исключить и в случае необходимости провести новые измерения.

При этом предварительно из вариационного ряда исключают признаки, содержащие систематические ошибки и промахи. Для этого определяют предельную случайную погрешность по формуле С. В. Башинского, 1  


Другое дело систематические ошибки - они являются неслучайными и имеют определенную направленность. Такие ошибки очень опасны, так как приводят к искажению результатов статистического исследования . Эти ошибки, как правило, являются преднамеренными. Известно, например, что люди предпочитают преуменьшать свои доходы, округлять возраст, стараются показать большую осведомленность в области культуры, науки, чем это есть на самом деле. Предприятия также могут внести элементы недостоверности в свою информацию, особенно в те характеристики, от которых зависят величина налоговых платежей, расчеты с кредиторами и т. п. Все ошибки такого рода необходимо выявить и исправить. Поэтому после проверки полноты данных проводится их контроль - счетный и логический.  

Ошибки регистрации - это отклонения между значением показателя, полученного в ходе статистического наблюдения , и фактическим, действительным его значением. Такой вид ошибок имеет место и при сплошном, и при несплошном наблюдениях. Ошибки регистрации бывают случайными и систематическими. Случайные ошибки - это результат действия различных случайных факторов (например, цифры переставлены местами, перепутаны соседние строки или графы при заполнении статистического формуляра). Систематические ошибки регистрации всегда имеют одинаковую тенденцию либо к увеличению, либо к уменьшению значения показателей по каждой единице наблюдения , и поэтому величина показателя по совокупности в целом будет включать в себя накопленную ошибку. Примером статистической ошибки регистрации при проведении социологических опросов может служить округление возраста населения, как правило, на цифрах, оканчивающихся на 5 и 0. Многие  

Систематические ошибки репрезентативности появляются вследствие нарушения принципов отбора единиц из исходной совокупности, которые должны быть подвергнуты наблюдению. Для устранения ошибок наблюдения необходимо осуществить контроль полученной информации.  

Однако может оказаться, что данные о доходе, полученные в результате опроса, на самом деле являются искаженными, - например, в среднем заниженными, т.е. объясняющие переменные измеряются с систематическими ошибками. В этом случае люди, действительно обладающие доходом X, будут на самом деле тратить на исследуемый товар в среднем величину , меньшую, чем ДА), т.е. в рассмотренном примере объ-  

Определение стандартных затрат имеет ряд недостатков, например, возможны систематические ошибки в определении нормативов и деструктивный результат от задания неадекватных норм и стандартов.  

Если систематические ошибки (износ режущего инструмента , температурные деформации и т. д.) приводят к смещению средних значений , то применяются контрольные диаграммы для среднего значения или для медиан. Если же систематические ошибки приводят к увеличению разброса параметров,  

Это означает, что отсутствует систематическая ошибка в определении линии регрессии , следовательно оценки параметров регрессии являются несмещенными, то есть математическое ожидание оценки каждого параметра равно его истинному значению.  

В противном случае мы принимаем гипотезу HI. Это означает, что при заданном уровне значимости в уравнении регрессии присутствует систематическая ошибка, и это уравнение должно быть уточнено.  

Текущие процедуры матричной оценки вторичных ценных бумаг , выпущенных на базе пула ипотек, подвергались критике за неадекватный учет возможностей, предоставляемых этими ценными бумагами (таких, как предоставляемая домовладельцам возможность производить авансовые выплаты по закладным в рассрочку). Эта возможность имеет свою внутреннюю стоимость , и то, что модель не в состоянии адекватно включить ее в цену вторичной ценной бумаги , порождает систематические ошибки.  

В принципе надо учитывать только случайные потери, не поддающиеся прямому расчету, непосредственному прогнозированию и потому не учтенные в предпринимательском проекте. Если потери можно заранее предвидеть, то они должны рассматриваться не как потери, а как неизбежные расходы и входить в расчетную калькуляцию. Так, предвидимое движение цен, налогов, их изменение в ходе осуществления хозяйственной деятельности предприниматель обязан учесть в бизнес-плане методов расчета предпринимательской деятельности или недостаточно глубокой проработки бизнес-плана систематические ошибки могут рассматриваться как потери в том смысле что они способны изменить ожидаемый результат в худшую сторону. Следовательно, прежде, чем оценивать риск, обусловленный действием сугубо случайных факторов , крайне желательно отделить систематическую составляющую потери от случайных.  

В рассмотренных показателях множественной корреляции (индекс и коэффициент) используется остаточная дисперсия , которая имеет систематическую ошибку в сторону преуменьшения, тем более значительную, чем больше параметров определяется в уравнении регрессии при заданном объеме наблюдений п. Если число параметров при х - равно от и приближается к объему наблюдений , то остаточная дисперсия будет близка к нулю и коэффициент (индекс) корреляции приблизится к единице даже при слабой связи факторов с результатом. Для того чтобы не допустить возможного преувеличения тесноты связи , используется скорректированный индекс (коэффициент) множественной корреляции.  

Экспериментальные торговые районы были выбраны случайным образом из числа разрешенных, и таким же образом были сформированы 27 комбинаций условий. Очевидно, что использование заданного перечня районов могло внести систематическую ошибку в наши результаты, но мы надеялись, что и на этот раз  

При изучении правильности устанавливается общая приемлемость данного способа измерения (шкалы или системы шкал). Непосредственно понятие правильности связано с возможностью учета в результате измерения различного рода систематических ошибок. Систематические ошибки имеют некоторую стабильную природу возникновения либо они являются постоянными, либо меняются по определенному закону. Возможно, что последующие этапы окажутся излишними, если в самом начале выяснится полная неспособность данного инструмента на требуемом уровне дифференцировать изучаемую совокупность, иначе говоря, если окажется, что систематически не используется какая-то часть шкалы либо та или иная градация шкалы или вопроса. И, наконец, возможно, что исходный признак не обладает дифференцирующей способностью в отношении объекта измерения. Прежде всего нужно ликвидировать или уменьшить такого рода недостатки шкалы и только затем использовать ее в исследовании.  

Надежность. При изучении различных аспектов разработки и использования тестов важную роль играет анализ ошибок измерения, ибо при составлении тестов, как и в любой работе, возможны ошибки. Обычно выделяют три класса ошибок промахи, систематические ошибки и случайные ошибки.  

Систематические ошибки остаются постоянными или закономерно меняются от измерения к измерению и в силу этих особенностей могут быть предсказаны заранее, а в некоторых случаях и устранены. К этой группе относятся ошибки, возникающие в связи с использованием различных методов сбора данных.  

Систематическую ошибку можно устранить, изменив процедуру формирования выборки. Случайная же ошибка будет присутствовать всегда, при любом выборочном опросе для общего результата значительно опаснее систематическая, так как по выборке ее невозможно выявить и оценить. Случайная ошибка подчиняется определенным законам и, используя статистические методы , ее можно оценить.  

Правильность анализа определяется близостью к нулю его систематической ошибки (отклонением математического ожидания серии измерений от истинного значения).  

Правильность анализа характеризуется близостью к нулю его систематической ошибки, оцениваемой по результатам внешнего геологического контроля. При внешнем контроле повторный (контрольный) анализ проб выполняется в другой, более квалифицированной лаборатории. Критерием правильности анализов служит при этом величина t  

Средние содержания ценных компонентов обычно рассчитывают способом взвешивания по мощности. Однако при подсчете часто приходится иметь дело со столовыми (видимыми) значениями мощности, причем пересчет их в истинные значения не всегда может быть осуществлен достаточно надежно. Расчет средних при этом обычно ведут со взвешиванием по значениям стволовых мощностей. Такое взвешивание может приводить к систематическим ошибкам, если между углами встречи тела полезного ископаемого выработками и качеством сырья в отдельных его частях возникает некоторая связь. Так, на полиметаллическом месторождении Степное (Казахстан) вертикальные скважины закономерно пересекали среднюю часть седловидной залежи под углами, близкими к прямому, а фланговые части - под более острыми углами, что определяло повышенные значения стволовых мощностей на флангах и пониженные в центре (рис. 3.8). Однако фланговые части залежи на крыльях антиклинали как раз характеризовались пониженным качеством руд. Взвешивание по стволовым мощностям приводило в данном случае к занижению среднего качества руд по залежи в целом. Аналогичные погрешности могут возникать при разведке неоднородных по качеству сырья линейных тел веерными скважинами.  

Особенно необходимо учитывать случайные потери, не поддающиеся прямому расчету, непосредственному прогнозированию и потому неучтенные в предпринимательском проекте. Если потери можно заранее предвидеть, то они должны рассматриваться не как потери, а как неизбежные расходы и включаться в расчетную калькуляцию. Так, предвидимое движение цен, налогов, их изменение в ходе осуществления хозяйственной деятельности необходимо учесть в бизнес-плане . Только в силу несовершенства используемых методов расчета производственной деятельности систематические ошибки могут рассматриваться как потери в том смысле, что они способны изменить в худшую сторону ожидаемый результат.  

Задача может быть модифицирована и обобщена в различных направлениях. Жесткое ограничение - несмещенность оценки (равенство нулю систематической ошибки) обычно можно ослабить и заменить ограничениями сверху и снизу величины первого момента ошибок про-  

Свяжем с задачей А задачу А" прогнозирования по минимуму дисперсии при [нулевых систематических ошибках прогноза. Задача А формулируется следующим образом.  

Увольнение в связи с обнаружившимся несоответствием рабочего или служащего занимаемой должности или выполняемой работе вследствие недостаточной квалификации либо состояния здоровья, препятствующих продолжению данной работы (п. 2 ст. 33 КЗоТ). Признаками несоответствия вследствие недостаточной квалификации могут быть систематические ошибки при выполнении порученной работнику работы, невыполнение нормы выработки , брак и т. п. Расторжение трудового договора в случаях, предусмотренных в п. 2 ст. 33 КЗоТ, недопустимо с работниками, не имеющими необходимого опыта работы в связи с непродолжительностью трудового стажа , а также по мотиву отсутствия специального образования, если оно, согласно закону, не является обязательным условием при заключении трудового договора (79, п. И).  

Оба вида ошибок могут иметь случайный и систематический характер. Случайные ошибки возникают по разным случайным причинам (описка, пропуск, неточный подсчет и т. д.) и воздействуют на точность данных как в сторону их увеличения, так и уменьшения. При достаточно большом количестве наблюдений согласно закону больших чисел эти ошибки взаимно погашаются и не оказывают существенного влияния на точность наблюдений. Систематические ошибки возникают по какой-либо определенной причине и вызывают одностороннее изменение данных (ошибки программы наблюдений, нарушение принципов отбора объектов наблюдения и т. п.), искажая их. Мерами предупреждения этих ошибок является правильное определение количества наблюдений , обоснованный выбор объектов наблюдения и др.  

Такая же опасность возникает при замене по какой-либо причине единиц, попавших в выборку, другими единицами (например, вместо отобранного домохозяйства, где в момент прихода интервьюера никто не открыл дверь, был проведен опрос в соседней квартире или интервьюер встретил решительный отказ участвовать в опросе и был вынужден пойти на замену домохозяйства). Как отмечает социолог В. И. Паниотто, систематические ошибки представляют собой некоторое постоянное смещение, которое не уменьшается с увеличением числа опрошенных и вызвано недостатками и просчетами в системе отбора респондентов. Если, например, для изучения общественного мнения жителей города в архитектурном управлении получить сведения о жилом фонде и из всех имеющихся в городе квартир отобрать случайным образом 400 квартир, а затем предложить интервьюерам опросить всех, кого они застанут в момент посещения в этих квартирах, то полученные данные не будут репрезентативны. Допущена систематическая ошибка более подвижная часть населения попадает в выборку в меньшей пропорции, а менее подвижная - в большей пропорции, чем в генеральной совокупности . Пенсионеров, например, можно чаще застать дома, чем студентов-вечерников. При увеличении выборки эта ошибка не устраняется если мы проведем опрос в 800 квартирах или даже во всех квартирах города (сплошной опрос), то полученные данные будут репрезентативны для населения, находящегося дома в момент прихода интервьюера, а не для всех жителей города.  

Чтобы минимизировать систематическую ошибку, возникающую при оптимизации, мы ограничились простым перекрестным правилом скользящих средних (СМА = rossing-Moving-Averages) - это правило торговли пропагандируют Брок и др. . Правило очень простое в том отношении, что в вычислении индикатора не участвуют числа Фибоначчи . Здесь важно, что технический анализ стремится предсказать, главным образом, направление изменения цены (вниз, вверх, на том же уровне), а не величину этого изменения.  

Можно еще дальше усовершенствовать эксперимент, связанный с определением урожайности культуры и зависимый от качества обработки почвы. Если каждого рабочего закрепить за определенным полем, то вследствие различности почв может появиться систематическая ошибка. Обозначим поля буквами W, X, У, ZH определим условия эксперимента рабочих между полями таким образом, чтобы каждый из них обслуживал поле только один день . В этом случае получим план, называемый греко-латинским квадратом , который позволяет усреднить влияние таких факторов, как день, поле, рабочий (табл. 4.6).  

СИСТЕМАТИЧЕСКАЯ ОШИБКА - понятие математической статистики - ошибка, которая постоянно либо преувеличивает, либо преуменьшает результаты измерений оценок наблюдаемых величин) в результате воздействия определенных факторов, систематически влияющих на эти измерения и изменяющих их в одном направлении (в отличие от случайных ошибок). Оценки, лишенные систематических ошибок, называются несмещенными оценками.  

Расчетное значение критерия t сравнивается с табличным значением статистического критерия Стьюдента для данного числа пар и выбранного уровня значимости. Систематическая ошибка считается отсутствующей, если tpa 4

Однострелочные секундомеры простого действия используют для измерения элементов операций по отдельным отсчетам затрат времени при выборочном и цикловом методах хронометража. Они имеют одну основную центральную стрелку, движущуюся по круговому циферблату, шкала которого может иметь секундную или деся- тичную градуировку. Пределы измерения шкалы 30 или 60 с. Секундомер может иметь один или два дополнительных счетчика для отсчета целого числа минут, прошедших с момента начала наблюдения. Их недостаток - малая точность при хронометрировании по текущему времени вследствие накопления систематической ошибки, вызываемой накапливанием запаздываний в пуске стрелки после считывания показаний. Этого недостатка лишен однострелочный секундомер суммирующего действия. Но он более сложен по конструкции и менее надежен в работе.  

Минимизация систематической ошибки . Практическое использование излагаемых выше предложений по повышению устойчивости оценок коэффициентов регрессии наталкивается на следующие неопределенности. Какую минимизируемую функцию риска выбрать Все предлагаемые оценки содержат параметры v - в п. 7.2.1, k - в п. 7.2.2 и К - в п. 7.2.3 и 7.2.4. Какими брать значения этих параметров Если полезно уменьшать веса больших отклонений прогнозируемой переменной, то, может быть, полезно взвешивать и предикторные переменные  

Систематическая ошибка -- это систематическое (неслучайное, однонаправленное) отклонение результатов исследований от истинных значений. Выделяют несколько основных видов систематических ошибок.

Систематическая ошибка, обусловленная нарушением правил подбора пациентов (selection bias). Она чаще всего возникает на этапе формирования исследуемых групп в результате отбора для включения в исследование лиц, которые не являются репрезентативными для общей совокупности больных. Эта систематическая ошибка создаётся в результате того, что сравниваемые группы испытуемых различаются не только по основным признакам, но и по другим факторам, влияющим на результат исследования, т.е. участники фактически отбираются из разных популяций.

Пример: в том случае, когда в качестве группы контроля используются ранее набранные больные, а методика их обследования с течением времени претерпела изменения, наступает хронологическое смещение.

Пример: в исследование включаются добровольцы, сами откликнувшиеся на объявление об исследовании.

Систематическая ошибка отбора может приводить в ИСК к формированию контрольной группы, плохо сопоставимой с основной группой. Например, при формировании контрольной группы из больных с другим заболеванием вмешиваются привходящие факторы, связанные с этой болезнью. С другой стороны, если контрольная группа формируется из общей популяции, то результаты могут оказаться несопоставимыми с основной группой, например, по возрасту и полу. Для предотвращения этой ошибки нужно подбирать пациентов попарно в контрольную и основную группы по нескольким признакам, потенциально влияющим на изучаемые показатели. Другой вариант предотвратить ошибку - использовать несколько контрольных групп.

Ошибка подбора, более характерная для ИСК, может возникать и в РКИ, если, например, из контрольной группы теряются самые тяжелые пациенты.

Систематическая ошибка, возникающая при измерении, вследствие неудачно выбранного метода оценки результатов исследования. Подобная ошибка появляется тогда, когда пациенты в сравниваемых группах обследуются неодинаково (разные методы диагностики, частота обследований) или используются нестандартизованные схемы получения данных и субъективные оценки.

Субъективная оценка в большинстве случаев даёт завышенный результат по сравнению с оценкой независимого эксперта и/или объективными методами.

Пример: ошибка вследствие различия в степени подробности сбора анамнеза в группах больных и здоровых.

Пример: рентгенологи, если проводят оценку рентгенограмм, зная дополнительную информацию о пациенте, могут более пристально и критически оценивать «контрольных» пациентов, по сравнению с «получающими активное лечение».

Систематическая ошибка, обусловленная действием вмешивающихся факторов (confounding), проявляется тогда, когда изучаемые факторы взаимосвязаны, и одни из них искажают эффекты других. Это может произойти из-за систематической ошибки при отборе, под действием случайности или из-за реального взаимодействия факторов, что должно учитываться при анализе результатов исследования.

Пример: при проведении исследования влияния потребления овощей на возникновение заболевания, не была учтена разная распространенность второго фактора риска (например, курения) в сравниваемых группах.

Систематическая ошибка, обусловленная эффектом плацебо . «Эффект пустышки» - систематическое улучшение состояния пациентов при имитации лечения. Если в контрольной группе проводится лечение, внешне не отличимое от активного в группе вмешательства, то разница между этими группами исключает эффект плацебо.

В ходе наблюдения за больными у них наблюдается улучшение состояния. Часть этого эффекта объясняется естественным течением болезни, часть - неспецифическим влиянием лечения (эффект плацебо), а разница между группами соответствует дополнительной пользе, приносимой активным лечением. РКИ специально планируются так, чтобы отсеять все эффекты, за исключением собственно эффекта активного лечения.

Рисунок 1. Выявление эффекта активного лечения по сравнению с плацебо

Способы устранения систематических ошибок

Наиболее частыми источниками погрешностей при проведении КИ являются ожидания исследователей и испытуемых, влияние которых можно уменьшить путём использования стандартных способов контроля с использованием: анамнез лечение плацебо

грамотного отбора испытуемых в контрольные группы;

метода «ослепления» (маскирование вмешательства);

рандомизации (со стратификацией или без неё) при формировании различных групп испытуемых;

методов статистического моделирования.

Испытания с самоконтролем - для экспериментальной и контрольной групп привлекается один объект, например, пациент в отдельные дни получает лечение, в другие - плацебо.

Перекрестное испытание - одни пациенты выбираются для экспериментальной группы, другие - для контрольной; после остановки лечения в новом периоде группа лечения становится контрольной, а контрольная - группой лечения. При обобщенном рассмотрении результатов получается, что каждый пациент был сам себе контролем.


Рисунок 2. Источники систематических ошибок и методы борьбы с ними

Испытания с подобранным контролем - проводятся путём подбора контроля к каждому случаю так, чтобы они не отличались ни по одному из подозреваемых факторов. Это позволяет избежать различий между группами, связанных с известными факторами, которые не интересны в данном исследовании. Например, при изучении связи болезни с особенностями питания путем подбора контрольных лиц можно исключить влияние на здоровье дохода и курения. При подборе сравниваются различия не между всеми случаями и контролем, а совокупность различий внутри отдельных пар.

Метод маскирования вмешательств («слепое» исследование, ослепление)

Немаскируемый (открытый) метод выполнения РКИ - испытуемый и исследователь знают о лечении, которое получает испытуемый. При этом, например, испытуемый в контрольной группе может начать лечиться другими средствами и разница между группами исчезнет.

Простой слепой метод - испытуемый не знает, какое лечение он получает. Метод чреват ошибками, связанными с тем, что врач и другие медицинские работники будут относиться по-разному к ведению пациентов, получающих активное лечение и плацебо (старое и новое вмешательство).

Двойной слепой метод - исследователь и пациент не знают, какое лечение получает он или группа.

Тройной слепой метод - исследователь, пациент и руководители КИ, организующие исследование и анализирующие его результаты, не знают, какое лечение получает группа.

Рандомизация - способ распределения испытуемых в группы в случайной последовательности - с использованием таблицы случайных чисел или иного правильного метода. Рандомизация - обязательное свойство правильного проведения КИ, которое в таком случае называется рандомизированным. Использование случайных чисел гарантирует, что вероятность попадания в конкретную группу лечения одинакова для всех испытуемых. Рандомизация используется не только при проведении КИ, но и при проведении исследований на экспериментальных животных.

В настоящее время РКИ стали стандартом клинических испытаний. Разработаны разные методы рандомизации -рандомизация пациентов по группам, парная рандомизация, факторная, адаптивная и ряд других.


Рисунок 3. Схематическое изображение РКИ

Правильными методами рандомизации являются использование таблиц случайных чисел и компьютерных программ, а также иногда бросание монеты, т.е. методы, которые генерируют случайную последовательность распределения пациентов по группам.

Однако надо отметить, что, несмотря на всеобщее признание, суть рандомизации нередко понимают неверно и вместо случайного распределения испытуемых прибегают к упрощенным способам (по алфавиту, датам рождения, дням недели и т.д.) и даже допускают произвольное распределение в группы. Подобная «псевдорандомизация» не даёт ожидаемых результатов.

Стратификация - используется с целью обеспечения равного распределения испытуемых по группам лечения с учетом факторов, существенно влияющих на исход, например, возраста, длительности болезни и т.д. Иными словами, например, пациенты-мужчины рандомизируются независимо от женщин. Стратификация гарантирует одинаковое распределение указанных факторов в группах лечения.

Статистическое моделирование - применяется для оценки силы связи и эффекта воздействия с одновременным учётом действия множества переменных. Наиболее распространенным методом статистического моделирования вероятности качественных событий (госпитализация, смерть) является множественная логистическая регрессия.

Систематическая ошибка – это смягченное выражение, заменяющее слова «ошибка экспериментатора».

Систематические ошибки остаются, как правило, постоянными на протяжении всей серии опытов. Величина их может быть и известной, и неизвестной заранее. Например, курс шхуны «Пилигрим» содержал неизвестную Дику Сэнду, но известную Негоро систематическую ошибку.

Систематические погрешности могут быть обусловлены различными причинами:

· ограниченной точностью изготовления прибора (погрешностью прибора). Шкала линейки может быть нанесена неточно (неравномерно); взвешивание может производиться с помощью неточных гирь; положение нуля термометра может не соответствовать нулевой температуре; капилляр термометра может иметь разное сечение в разных участках шкалы; стрелка амперметра может не располагаться на нуле в отсутствие электрического тока через прибор;

· такие ошибки часто возникают из-за того, что реальная установка в чем-то отличается от идеальной, или условия эксперимента отличаются от предполагаемых теорией, а поправки на это несоответствие не делаются. Систематическая погрешность возникает при измерении массы, если не учитывается действие выталкивающей силы воздуха на взвешиваемое тело и на разновесы; при измерениях объема жидкости или газа, если не учитывается тепловое расширение; при калориметрических измерениях, если не учитывается теплообмен прибора с окружающей средой. Другими примерами эффектов, которыми может быть обусловлена обсуждаемая ошибка, являются термо-ЭДС в контактах, сопротивление подводящих проводов, «мертвое» время счетчиков частиц;

· систематические ошибки могут быть обусловлены также неправильным выбором метода измерений. Например, мы совершим такую ошибку, определяя плотность какого-то материала посредством измерений объема и веса образца, если этот образец содержит внутри пустоты, например, пузыри воздуха, попавшие туда при отливке;

· мы допускаем систематическую погрешность, округляя численную величину до какого-либо приближенного значения, например, полагая π = 3, π = 3.1, π = 3.14 и т. д. вместо π = 3.14159265…



При наличии скрытой систематической погрешности результат, приведенный с незначительной ошибкой, будет выглядеть вполне надежным, хотя на самом деле он является неверным.

Классическим примером может служить опыт Милликена по измерению элементарного электрического заряда e . В этом эксперименте требуется знать вязкость воздуха. Милликен взял заниженную величину вязкости и получил

e = (1.591 ± 0.002)∙10 - 19 Кл.

В настоящее же время принято значение

e = (1.60210 ± 0.00002)∙10 - 19 Кл.

Долгое время величины ряда других атомных констант, таких, как постоянная Планка и число Авогадро, базировались на значении элементарного электрического заряда e , полученном Милликеном, и, следовательно, содержали ошибку, превышающую 0.5 %.

Систематические ошибки не поддаются математическому анализу, и поэтому их нужно выявить и устранить . Если удается обнаружить причину и найти величину сдвига (например, вес вытесненного телом воздуха при точном взвешивании), то систематическую погрешность можно исключить введением поправки к измеренному значению. Однако общих рецептов и универсальных правил, позволяющих обнаружить систематические ошибки конкретного измерения, не существует Выявление, оценка и устранение таких ошибок требует опыта, догадки и интуиции экспериментатора. Нужно тщательно продумывать методику опытов и придирчиво выбирать аппаратуру. Иногда систематическую ошибку, обусловленную измерительным прибором, можно уменьшить, используя более точный прибор, желательно, другого типа. Наиболее действенный способ обнаружения систематических ошибок – это сравнение результатов измерений одной и той же величины, выполненных принципиально разными методами.

Случайная ошибка

Случайные ошибки проявляются в разбросе отсчетов при повторении измерений в одних и тех же доступных контролю условиях.

Величина случайных ошибок различна даже для измерений, выполненных одинаковым образом. Случайные ошибки происходят вследствие меняющихся от измерения к измерению неконтролируемых причин, действие которых неодинаково в каждом опыте и не всегда может быть учтено. Даже при взвешивании одними и теми же гирями мы, вообще говоря, будем получать разные значения веса. Источниками ошибок могут быть, например, колебания воздуха, воздействующие неодинаково на чашки весов; пылинка, осевшая на одну из чашек; нагревание одной половины коромысла от приближения руки взвешивающего; разное трение в правом и левом подвесах чашек и множество других причин, которые практически невозможно учесть. При измерениях периода колебаний маятника с помощью секундомера скажутся погрешности моментов пуска и остановки секундомера, ошибка в величине отсчета, небольшая неравномерность движения маятника вследствие трения. Случайные погрешности вызываются также сотрясениями здания. В опытах по измерению скорости радиоактивного распада ядер сама определяемая величина определена лишь статистически, как некоторое среднее значение, и флуктуации числа распадов в равные промежутки времени будут наблюдаться даже при идеально точной аппаратуре.

Проделав измерения и используя методы обработки, основанные на теории ошибок, можно дать оценку случайной ошибки и указать вероятность, с которой истинное значение измеряемой величины находится внутри некоторого доверительного интервала.

Случайную ошибку можно уменьшить путем многократного повторения измерений.

Промах

Следует особо выделить такой вид ошибок, как грубый просчет, или промах. Под промахом понимается ошибка, сделанная вследствие неверной записи показаний прибора, недосмотра экспериментатора, или вызванная неисправностями аппаратуры. Например, неправильно записанный отсчет, замыкание электрической цепи являются промахами, которых следует по возможности избегать.

В качестве примера промаха при взвешивании можно привести запись веса 100.20 г вместо 1000.20 г. При измерениях длины метровой линейкой промах может появиться, если один из концов измеряемого предмета окажется совмещенным не с нулевым делением линейки, а, скажем, с делением 10 см.

Если серия из небольшого числа измерений содержит грубую ошибку – промах, то наличие этого промаха может сильно исказить как среднее значение <x > измеряемой величины, так и погрешность измерения D.x . Поэтому такой промах необходимо исключить из окончательного результата. Обычно промах имеет значение, резко отличающееся от других данных. Иногда промах удается выявить, повторив измерение.

Для устранения промахов нужно соблюдать аккуратность и тщательность в работе и записи данных. Как правило, грубые ошибки могут быть обнаружены, поэтому результаты таких измерений следует отбрасывать.

Ошибки измеренийподразделяются на систематические и случайные.

Величина систематических ошибок одинакова во всех измерениях, проводящихся одним и тем же методом с помощью одних и тех же измерительных приборов. Различают четыре группы систематических ошибок:

1) ошибки, причина возникновения которых известна и величина которых может быть определена достаточно точно. Например, при определении результата прыжка рулеткой возможно изменение её длины за счёт различий в температуре воздуха. Это изменение можно оценить и ввести поправки в измеренный результат;

2) ошибки, причина возникновения которых известна, а величина нет. Такие ошибки зависят от класса точности измерительной аппаратуры. Например, если класс точности динамометра для измерения силовых качеств спортсменов составляет 2.0, то его показания правильны с точностью до 2% в пределах шкалы прибора. Но если проводить несколько измерений подряд, то ошибка в первом из них может быть равной 0,3%, а во втором – 2%, в третьем – 0,7% и т. д. При этом точно определить её значения для каждого из измерений нельзя;

3) ошибки, происхождение которых и величина неизвестны. Обычно они проявляются в сложных измерениях, когда не удаётся учесть все источники возможных погрешностей;

4) ошибки, связанные не столько с процессом измерения, сколько со свойствами объекта измерения. Как известно, объектами измерений в спортивной практике являются действия и движения спортсмена, его социальные, психологические, биохимические и т. п. показатели. Измерения такого типа характеризуются определённой вариативностью, и в её основе может быть множество причин. Рассмотрим следующий пример. Предположим, что при измерении времени сложной реакции хоккеистов используется методика, суммарная систематическая погрешность которой по первым трём группам не превышает 1%. Но в серии повторных измерений конкретного спортсмена получаются такие значения времени реакции (ВР): 0,653 с; 0,526 с; 0,755 с и т. д. Различия в результатах измерений обусловлены внутренними свойствами спортсменов: один из них стабилен и реагирует практически одинаково быстро во всех попытках, другой – нестабилен. Однако и эта стабильность (или нестабильность) может измениться в зависимости от утомления, эмоционального возбуждения, повышения уровня подготовленности.

Систематический контроль за спортсменами позволяет определить меру их стабильности и учитывать возможные погрешности измерений.

В некоторых случаях ошибки возникают по причинам, предсказать которые заранее невозможно. Такие ошибки называются случайными. Их выявляют и учитывают с помощью математического аппарата теории вероятностей.

Перед проведением любых измерений нужно определить источники систематических погрешностей и по возможности устранить их. Но так как полностью это сделать нельзя, то внесение поправок в результат измерения позволяет исправить его с учётом систематической погрешности.

Для устранения систематической погрешности используют:

а) тарирование – проверку показаний измерительных приборов путём сравнения их с показаниями эталонов во всём диапазоне возможных значений измеряемой величины;

б) калибровку – определение погрешностей и величины поправок.

Под случайными величинами понимают числовые характеристики случайных событий. Другими словами, случайные величины – это числовые результаты экспериментов, значения которых которые невозможно (в данное время) предсказать заранее. Случайные величины делят на дискретные и непрерывные в зависимости от того, каково множество всех возможных значений соответствующей характеристики – дискретное или же непрерывное.

Это деление довольно условно, но полезно при выборе адекватных методов исследования.

Случайные величины можно задавать разными способами. Дискретные случайные величины обычно задаются своим законом распределения. Тут каждому возможному значению x1, x2,... случайной величины X сопоставляется вероятность p1,p2,... этого значения. В результате образуется таблица, состоящая из двух строк:

Это и есть закон распределения случайной величины. Непрерывные случайные величины законом распределения задать невозможно, так как по самому своему определению их значения невозможно перенумеровать и потому задание в виде таблицы тут исключается. Однако для непрерывных случайных величин есть другой способ задания (применимый, кстати, и для дискретных величин) –это функция распределения:

равная вероятности события , которое состоит в том, что случайная величина X примет значение, меньшее заданного числа x.

14 При обработке данных используют такие характеристики случайной величины Х как моменты порядка q, т.е. математические ожидания случайной величины Xq, q = 1, 2, … Так, само математическое ожидание – это момент порядка 1. Для дискретной случайной величины момент порядка q может быть рассчитан как

Для непрерывной случайной величины

Моменты порядка q называют также начальными моментами порядка q, в отличие от родственных характеристик – центральных моментов порядка q, задаваемых формулой

Вопрос.

Диспе́рсия случа́йной величины́ - мера разброса данной случайной величины, то есть её отклонения от математического ожидания

Дисперсией дискретной случайной величины называют сумму квадратов отклонения значений случайной величины от своего математического ожидания. Дисперсия показывает величину разброса значений случайной величины от своего математического ожидания.

Пусть - случайная величина, определённая на некотором вероятностном пространстве. Тогда

D{X}=M [|X-M[X]| 2 ] , где символ M обозначает математическое ожидание.

Дисперсия любой случайной величины неотрицательна:

Если дисперсия случайной величины конечна, то конечно и её математическое ожидание;

Если случайная величина равна константе, то её дисперсия равна нулю

Дисперсия суммы двух случайных величин равна: , где - их ковариация;

Вероятность того, что истинное значение измеряемой величины лежит внутри некоторого интервала, называется доверительной вероятностью, или коэффициентом надежности, а сам интервал - доверительным интервалом. Каждой доверительной вероятности соответствует свой доверительный интервал. Однако это утверждение справедливо только при достаточно большом числе измерений (более 10), да и вероятность 0,67 не представляется достаточно надежной - примерно в каждой из трех серий измерений a может оказаться за пределами доверительного интервала. Для получения большей уверенности в том, что значение измеряемой величины лежат внутри доверительного интервала, обычно задаются доверительной вероятностью 0,95 - 0,99. Доверительный интервал для заданной доверительной вероятности учетом влияния числа измерений n можно найти, умножив стандартное отклонение среднего арифметического на так называемый коэффициент Стьюдента.