Особенности закалки различных видов стали – способы, температура, прочие нюансы. Как самому закалить металл в домашних условиях

Эти понятия часто путают.

Термин «каление» в общем смысле означает «нагретый до высоких температур». И все. Применительно к металлам: достижение металлом определенной температуры сопровождается появлением характерного цвета - красного, желтого или белого. При нагреве в муфельной печи начало видимого свечения металла соответствует температуре порядка 600 о С. О цветах каления подробно сказано в Википедии:

Температура, о С Цвет каления
550 Темно-коричневый
630 Кроичнево-красный
680 Темно-красный
740 Темно-вишневый
770 Вишневый
800 Ярко- или светло-вишневый
850 Ярко- или светло-красный
900 Ярко-красный
950 Желто-красный
1000 Желтый
1100 Ярко- или светло-желтый
1200 Желто-белый
1300 Белый

Цвет каления давал хорошее качественное представление о температуре металла - чем светлее, тем горячее. Поэтому тот кузнец, который мог лучше различать цвета и выбрать оптимальный цвет (= температуру), получал более качественные изделия.

(Понятно, что скверну выжигали каленым железом - самым эффективным, что было в арсенале средств борьбы. Понятно также, что это использовали и палачи - если железо красное, то точно будет больно, и очень. Относительно каленых орешков - их «калят», т.е. нагревают до высокой температуры для того, чтобы сделать скорлупу хрупкой и облегчить извлечение ядрышка. Т.е. в процессе нагрева орехов скорлупа меняет свои свойства. Собственно, то же самое относится и к семечкам. «Щелкать» можно только сушеные или жареные семечки, именно потому, что они сухие. С сырыми - не получится.)

Относительно металла. В первом приближении, если металл нагреть, а потом неспешно охладить, то по окончании охлаждения он будет таким же, как до нагрева (или почти таким же). На рисунке 1 показана в исходном состоянии (рис.1, а) и после нагрева до 900 о С (рис.1,б). Видно, что размер зерна не изменился, а вот структура внутри зерна, скорее всего, изменилась. Могли измениться и свойства. Тот и другой образец травили одинаково, однако структура выглядит по-разному.

а б

Рисунок 1. Армко -железо в исходном состоянии (а) и после нагрева до высоких температур (б).

Что касается стали, если нагреть ее до температуры существования аустенита, да еще выдержать при этой температуре, то может измениться размер аустенитного зерна; это окажет влияние на свойства. Но это уже дальше от нашей темы.
А вот если охладить сталь быстро, то состояние ее кардинально изменится. Это будет уже закаленная сталь.
Закалка стали - это вид термической обработки , который заключается в нагреве стали на 30—50 ºС выше критической точки (выше А с1 для эвтектоидных и заэвтектоидных сталей и выше А с3 для доэвтектоидных), выдержке при этой температуре и охлаждении со скоростью выше критической. Целью закалки является получение структуры мартенсита, который придает стали совершенно другие свойства.
Закалка имеет смысл только для сплавов с переменной растворимостью легирующих элементов при изменении температуры (есть «закалка вакансий », но это не тема данной статьи). Поэтому закалка, например железа, не имеет смысла с технологической точки зрения.
Закалка интересна именно большой скоростью охлаждения, поскольку позволяет 1) зафиксировать высокотемпературное состояние (например пересыщенный твердый раствор) и/или 2) создать структуру, имеющую определенные свойства, отличающиеся от свойств медленно охлажденного металла. Результат закалки показан на рисунке 2. В стали, не прошедшей закалку, структура представляет собой зерна феррита и перлита (рис.1, а). После закалки сталь имеет структуру мартенсита (рис.1,б) Соответственно, свойства стали до и после закалки будут разными.

Рисунок 2. Сталь до (а) и после (б) закалки.

Т.е., когда вместо «закаленный» говорят «каленый», это неверно.

В литературных источниках, в том числе в интернете, упоминаются каленые стрелы.Да, стальные стрелы могли иметь закаленный наконечник. Но не каленый. Вероятно, смешение понятий получилось потому, что сначала этот наконечник надо нагреть до температуры каления. Собственно, температура закалки для разных сталей составляет примерно от 850 до 1100 о С и лежит как раз в интервале цветов красного и желтого каления.
Есть еще интересный момент. Если стрелы (или наконечники к ним) ковали в кузнице, то для этого надо было их разогреть до высокой температуры. Это делалось на раскаленных углях, другого способа раньше не было. Т.е. имела место твердая цементация. Оптимальная температура цементации 830-850 о С, т.е. опять же попадаем в интервал температур красного каления. После изготовления наконечники охлаждалось в воде. Ну, а термической обработкой после цементации является, в том числе и закалка.
Насчет каленых деревянных стрел. Возможно, их обжигали на огне для придания лучших свойств. Тогда точно «каленая». Но это уже к специалистам по обработке древесины.
Подведем итог для металлов:
1. Каленый - претерпевший нагрев до высокой температуры, изменение свойств не предполагается;
2. Закаленный - прошедший термическую обработку (закалку) с целью изменения свойств.

Закалка металла увеличивает твердость изделия в 3-4 раза.

Необходимость этой процедуры возникает тогда, когда нужно, чтобы металлический предмет без усилий разрезал стекло.

Случается, что потребность закалить инструмент из металла появляется из-за того, что он либо не закален до нужной степени, либо, наоборот, в его закалке переусердствовали.

В первом случае металлические предметы, например сверла, заминаются, во втором – буквально крошится.

Проверить еще в магазине, как хорошо закален инструмент из металла, вряд ли получится.

Хотя возможность такой проверки существует. Надо взять напильник и провести им по краю режущего предмета – ножа или топора.

То, что напильник пристает и липнет к металлу, означает, что изделие мало закаливали.

При этом его край будет слишком мягким и податливым.

Если напильник отходит от предмета с легкостью и будто гладит его, а рука во время нажатия не ощущает никаких неровных мест, то на лицо перекал изделия.

Если в ваших руках все-таки оказалось оборудование из металла, которое нуждается в дополнительной закалке, то ничего страшного.

Закалить нож можно и своими руками, даже не прибегая сложным технологиям, то есть в домашних условиях.

Единственное, что нужно помнить: запрещено закаливать малоуглеродистые стали.

А вот увеличить прочность углеродистых и инструментальных сталей вполне вероятно.

Проще говоря, технология закаливания представляет собой два действия – нагревание образца до высокой температуры и его охлаждение.

Только не стоит предполагать, что все элементарно, ведь группы металлов отличаются своеобразной структурой и характеристиками.

Термическая обработка металла своими руками оправдана, если:

  • существует острая потребность упрочнить материал, например, «усилить» режущие края кухонной утвари или инструментов, вроде стамески или зубила;
  • нужно повысить пластичность предмета, что делает проще работу с металлом, например, процесс горячей ковки.

Цена профессиональной закалки 1 кг составляет 100-200 рублей. А закалка мелких деталей обойдется дешевле. Цена на эту услугу колеблется от 6 до 20 рублей.

Если закаливать оборудование в домашних условиях, то важно знать некоторые тонкости этого процесса.

Нагрев требует равномерности, он должен проходить без появления на предмете черных или синих пятен. Ни в коем случае нельзя нагревать образец до крайнего показателя.

То, что изделие разогревается правильно, подскажет окрашивание его в яркий красный цвет.

Для закалки металлического предмета типа сверла подходит такое оборудование, как электропечь или термо печь, а также паяльная лампа и большой костер.

Что более подходит – печь, электропечь или открытый огонь, зависит от того, какой температуры требует обрабатываемый вид металла.

Когда нужно закалить не всю поверхность металлического предмета, а лишь определенное место, применяется струйная закалка. Она предполагает, что струя холодной воды направляется на объект точечно.

Методика охлаждения сверла, отвертки, зубила или обжимки может быть разной. Ее можно осуществить в несколько ступеней, можно разово и резко или постепенно. Все зависит от вида металла.

Если планируется проводить операцию с одним охладителем, то подготавливается специальное оборудование, вроде ведра или бочки. Для этого подойдет даже ванна.

Этот способ охлаждения идеален для изделий, сделанных из стали углеродистой или легированной.

Когда для понижения температуры предмета из металла нужна двухступенчатая схема охлаждения, применяют две разные среды. Это процедура обеспечивает и отпуск металла.

Так, вначале сверла или дисковые детали охлаждают водой, затем – маслом, которое может быть машинным или минеральным.

Охлаждение с помощью масла осуществляется во вторую очередь, так как есть риск его воспламенения из-за высокой температуры.

Температурные режимы и другие показатели закалки отражает приведенная ниже таблица.

Закалка стали на открытом огне

Закалить металл возможно и в домашних условиях. Для легкого и полезного процесса закаливания надо развести костер и приготовить две большие тары. В огне должно быть много раскаленных углей.

В одну емкость наливается дизельное или моторное масло, в другую – чистая вода, лучше из колодца. Следует предварительно подготовить инструмент, которым надо будет держать раскаленное до пределов изделие.

Желательно найти кузнечные клещи, но если их нет среди инструментов, можно вооружиться чем-нибудь другим, похожим на клещи.

Когда предварительные работы сделаны, металлические сверла или другие предметы кладут в самый центр пламени, то есть на горячие угли.

Угольки насыщенного белого цвета раскаленнее остальных. За процессом закалки важно смотреть – пламя должно быть малиновым, а не белым. Если огонь будет окрашен в последний цвет, то есть угроза перегрева и даже сгорания металла.

Необходимо, чтобы цвет распределялся по всей площади костра равномерным образом. На кромке изделия, которое подвергается закалке, не должны появляться черные пятна.

А если металл местами синеет, то это свидетельствует о том, что материал чересчур размягчился и стал излишне пластичен. Этого ни при каких обстоятельствах допускать нельзя.

Поэтому процесс требует повышенной внимательности, ведь можно перестараться и раскалить лезвие топора добела.

Когда металлическое оборудование прокалится в огне, его пора убирать из очага высокой температуры.

Раскаленный предмет нужно опускать в тару с маслом много раз с частотой в 3 секунды, пошагово увеличивая этот промежуток времени.

Медлить с этими действиями нельзя, нужно проделать операции по закалке металлической кромки скоро и резко.

При работе своими руками элемент стоит окунать в тару с жидкостью до того момента, как цвет лишится своей насыщенности и яркости.

На этом этапе не забывайте об осторожности, так масляные капельки на ноже или топоре могут вспыхнуть, очутившись в воде.

Как правильно и неправильно погружать разные детали, в том числе сверла и дисковые фрезы воду, отражает таблица:

Очень часто возникает необходимость закалить сверла. Тонкие длинные элементы не рекомендуется опускать в воду плашмя, иначе нижний слой металла, охлаждаемый первым, сожмется.

Сверла следует опускать в жидкость более толстым концом.

Если соблюдать все правила и предосторожности, то закалка своими руками не покажется сложной и опасной процедурой. Она принесет должный гарантированный эффект.

Но порой в домашних условиях приходится закалять стальное оборудование или расплавлять цветной металл. Для таких операций необходима крайне высокая температура, 700-900 градусов.

А разогреть металлические предметы до такого показателя способна только муфельная печь или электропечь. Муфельную печь можно сделать самому. Электропечь в домашних условиях сделать вряд ли получится.

Как изготовить камеру для закаливания металла?

Самодельная муфельная печь сегодня просто необходима в домашнем хозяйстве. Она позволяет без лишних действий подвергнуть изделие термообработке.

Чтобы изготовить печь своими руками, понадобится огнеупорная глина, которую используют для покрытия котлов. Из этого материала создают камеру толщиной не более 1 см.

А ее размеры должны вписываться в следующие параметры длины, высоты и ширины – 210*105*75 мм.

Вылепляя муфельную печь своими руками, надо иметь заранее сделанную из картона форму. Ее лучше пропитать парафином, чтобы она не прилипала.

Глина намазывается на форму с изнаночной стороны, потому что так она не даст во время сушки сильной усадки. Когда глина затвердеет, то самостоятельно отойдет от граней формы.

Эта же огнеупорная глина послужит материалом для изготовления дверки печи. Затем самодельная муфельная печь в виде двух деталей должна просохнуть на открытом воздухе.

Затем ее до конца просушивают в печи при стоградусной температуре.

Потом дверку и камеру обжигают, мало-помалу увеличивая температуру до 900 градусов. Затем эти детали должны постепенно остынуть в самой печи.

Потом дверцу присоединяют к печи, осторожно действуя напильником и шлифуя поверхность шкуркой.

На камеру нужно намотать 18 метров нихромовой проволоки. Ее толщина должна быть 0,75 мм. Первый и последний витки скручивают.

Чтобы не было риска возникновения замыкания, расстояния между витками проволоки намазывают глиной. На подсохший слой глины намазывается еще один слой толщиной около 12 см.

Изготовленная своими руками самодельная муфельная печь помещается в каркас из металла размером 270*200*180 мм.

Чтобы корпус собирался легко, его целесообразнее сделать с двумя съемными крышками, которые фиксируются винтами.

К крышке впереди на петлю прикрепляют дверцу, она должна открываться по горизонтали. На данную дверку посредством болтов и прокладок необходимо установить деталь из керамики.

Оставшиеся зазоры снова залепляют глиной, а края проволоки убирают на заднюю крышку каркаса.

Затем готовится разъем и стандартный шнур с вилкой. Все отверстия между элементами для нагревания и каркасом нужно заполнить крошкой асбеста.

Чтобы установить термопару и иметь возможность следить за процессом нагревания, в камере желательно сделать две дырочки.

Первую – диаметром 1 см, вторую – 2 см. К этим отверстиям нужно прикрепить закрывающиеся металлические шторки.

Самодельная конструкция печи весит 10 кг и может в течение часа раскаляться до 950 градусов.

Ее наличие облегчает процесс закалки сверла, напильника, матрицы и многих других изделий из металла. Как самодельная печка закаливает металлическое оборудование, показано на видео.

Хотя муфельное оборудование, закаляющее металл, не единственный вариант. Термообработку может выполнить камерное и пламенное оборудование, электропечь, термопечь, а также печи-ванны.

Во всяком случае, сделать прибор для закалки самостоятельно выгоднее, чем покупать его. Например, средняя цена муфельной печи – 40 тысяч.

Электропечь используется для закалки металла при температуре около 1300 градусов и стоит электропечь гораздо дороже.

Закаливать металл научились давно - такая процедура существенно укрепляет изделия из него. Сейчас в основном применяется промышленная с помощью термических печей, но даже бытовая закалка стали в домашних условиях способна лишить металлический предмет нежелательной мягкости и тягучести.

Имеется и обратная сторона - излишнее закаливание наделяет металл чрезмерной хрупкостью, но её так же можно устранить собственными силами, подвергнув изделие отпуску.

Закалка нужной степени не даст металлу легко гнуться, и в то же время не позволит ему крошиться. Как правильно термически обработать стальное изделие, чтобы этого добиться самостоятельно - тема нашего обзора способов закалки.

Что происходит с металлом при закалке

Закалка по сути - это раскаливание докрасна либо добела, в зависимости от материала, уже готового изделия, или же его частей, с последующим быстрым охлаждением - одиночным или же поэтапным, с целью повысить степень его прочности.

Ответ на вопрос - почему закаливание усиливает прочность материалов, был точно дан лишь после изучения кристаллического строения их решётки. До этого мастера без достоверного понимания механизма, что представляет собой закалка металла, опытным путём пришли к выводам о том, что она повышает твёрдость по сравнению с сырым материалом.

  • При раскаливании металлов и сплавов выше критической точки происходит разрушение их первоначальной кристаллической структуры.
  • Металл становится мягким, а кристаллы - подвижными и мелкозернистыми.
  • После погружения в закалочную среду (резкое охлаждение), зёрна сохраняют мелкозернистую структуру, а связь между ними укрепляется.

Закалённый материал приобретает более плотную и поэтому прочную структуру, однако одновременно присоединяется хрупкость. Поэтому часто закаляют лишь наконечники, кромки режущей поверхности и иные рабочие части изделий, оставляя саму сердцевину пластичной, чтобы не терялась износостойкость и выдерживались нагрузки.

Как проверить металл на твёрдость

Для того, чтобы решить, нуждается ли конкретный материал в термической обработке, нужно выяснить степень его твёрдости. И только потом подбирать подходящий способ, как закалить металл в домашних условиях, чтобы получить желаемый баланс твёрдость/пластичность.

В сущности твёрдость металла - это степень его сопротивляемости на воздействие более прочного предмета.

Существуют лабораторные и промышленные методы, эталонные таблицы, но самой популярной и простой остаётся методика Роквелла, где с помощью вдавливания наконечника из алмаза либо шарика из высокопрочной стали на приборе проверяется степень углубления и соотносится со шкалой.

Но если точные цифры показателя по шкале твёрдости Роквелла не нужны, то можно на глазок прикинуть её для металла в домашних условиях. Для этого придётся вооружиться надфилем, если нужно проверить плоскую либо округлую поверхность, или же куском стекла, если требуется испытать острую кромку.

  • Мягкий металл (не проходивший закалку сырец) почти без усилий берётся надфилем и не режет стекло, лишь слегка царапая.
  • Относительно твёрдый металл (умеренная закалка) берётся надфилем тяжело, со значительными усилиями, на стекле оставляет чёткую уверенную борозду.
  • Прочный металл (сильная закалка) надфиль уже отказывается брать, зато стекло поддаётся ему без усилий, сопровождая резку характерным хрустом.

Определившись с изначальной степенью твёрдости, можно подбирать способы для самостоятельной закалки стальных и металлических предметов, чтобы достичь желаемой прочности. Применив эти нехитрые тесты по окончании процесса, аналогично можно проверить полученную после закалки твёрдость, убедившись, что результат удовлетворителен.

Какими бывают разновидности бытовой закалки

В зависимости от стоящей задачи и изначальной марки стали, проводят самостоятельную закалку различными методами, заставляя металл становиться настолько прочным, насколько это необходимо. Эти разновидности процесса отличаются режимами охлаждения, наиболее подходящими под конкретный металл. Если применить некорректный режим охлаждения, то результат получится неудовлетворительным, а изделие - испорченным.

  • Закалка в единичной охладительной среде - наиболее излюбленный из-за простоты метод, однако его не стоит применять для металла с высоким (от 0,8%) содержанием углерода. Иначе, по причине появления внутренних напряжений в структуре, возникнут чрезмерная хрупкость и трещины, а само изделие может деформироваться. Поэтому такая методика годится лишь для низкоуглеродистого металла.
  • Прерывистая, в 2 этапа, закалка с охлаждением в 2 разных средах - воде, а затем в масле либо на воздухе. Именно такая разновидность пригодна для высокоуглеродистого материала или же легированных сталей, потому что не приводит к появлению деформаций и трещин. По причине сложности метода, к нему стоит прибегать, чтобы закалить крупные изделия.
  • Ступенчатая поэтапная закалка, когда после накаливания изделие помещают в горячую солевую ванну на несколько минут, обеспечивает ровное охлаждение по всему сечению, что предотвращает термическое напряжение, ведущее к трещинам и ломкости изделия. Далее металл остывает на воздухе. Такой способ лучше применять для тонких изделий с высоким содержанием углерода в материале.
  • Поверхностная (частичная) закалка наделяет металлические изделия поверхностной прочностью и износостойкостью, при этом сохраняется пластичность сердцевины. Такой метод применим для деталей, на поверхность которых приходится значительная нагрузка.
  • Закалка с последующим отпуском позволяет закалить изделие для придания ему твёрдости лишь на заданную глубину, а более глубокий слой оставить пластичным. Таким методом повышают прочность ударного инструмента.

К сведению! Не страшно, если получилась излишняя хрупкость - её можно устранить с помощью процедуры отпуска.

Какие закалочные среды подойдут под самостоятельную закалку

Выбор среды, где будет осуществляться процесс самостоятельной закалки, - столь же важный этап, как и собственно нагрев, поскольку в разных средах по-разному происходят реакции кристаллизации и полиморфных превращений.

В быту для закалочного охлаждения подходят для применения вода, масло, растворы солей и полимеров, воздух.

  • Вода достаточно быстро способна охладить раскалённый материал, что при повышенном содержании углерода может повлечь некоторые недостатки - деформацию, хрупкость, растрескивание. Поэтому в воде закаляются низкоуглеродистые материалы, либо изделия при частичном закаливании.
  • Минеральное масло намного медленнее, а поэтому равномернее, охлаждает раскалённую сталь, что минимизирует появление неравномерности структуры и её напряжения, и, соответственно, дефектов вследствие закалки. Обычно маслом охлаждается легированная сталь либо материал с высоким процентом углерода.
  • Водные растворы хлорида либо гидроксида натрия, с концентрацией в районе 10%, гораздо равномернее охладят разогретое изделие, чем просто вода. Это позволит добиться одинаковой структурной трансформации по всему сечению металла. Больше подходит для закалочной обработки изделий из низколегированных и высокоуглеродистых сталей.
  • Полимерные растворы (силикат, моющие средства) снижают скорость остывания материала, а поэтому уменьшаются дефекты и деформация изделия.

Для охлаждения вода берётся с температурой от 20º до 80ºС, масло - с температурой от 20º до 200ºС, солевые растворы - с температурой от 20ºС и до максимума.

Способы, как с помощью закалки самому повысить твёрдость металла

Чтобы произвести закалку либо отпуск, металл следует сильно нагреть - минимум до малинового цвета. Для этих целей оптимально подойдёт термопечь, а при её отсутствии - открытое пламя костра, газовой горелки, паяльной лампы, или же ток под высоким напряжением. Готовясь провести закаливание, нужно предварительно учесть многие моменты.

  • Чем выше изначальная твёрдость материала, тем сильнее его требуется накалять.
  • Чем больше у материала углерода в составе, тем медленнее должно производиться остывание.
  • Если стоит задача закалить предмет целиком, то ему потребуется равномерный нагрев по всей поверхности.
  • Не нужно перегревать изделие, лучше избегать появления синих или чёрных вкраплений на раскалённой поверхности.
  • Заранее готовятся щипцы и тара с охладителем (охладителями, если их несколько).

Полную, тотальную закалку лучше производить на пламени костра из углей - они долго держат высокий жар, а кострище позволит целиком поместить туда габаритную деталь и равномерно её разогреть.

Частичное закаливание, например режущей кромки, можно произвести с помощью паяльной лампы, ею же легко закаляются мелкие детали - болты, свёрла, гвозди.

Как только материал разогреется до необходимой точки, его тут же вынимают и перекладывают в охладитель (ванну, тару, сосуд).

С помощью подачи высокого тока на пластину с углеродом можно значительно повысить прочность наконечника металлического изделия, когда оно сделано из металла без углерода или с его низким процентом.

Важно! При работе с маслами будьте осторожны - они могут легко воспламеняться!

Процедуру закалки, если материал так и не приобрёл нужной прочности, можно повторять - но для этого всякий раз его придётся больше нагревать. Если же деталь получилась излишне хрупкой, то применяют отпуск.

Как самому убрать излишнюю твёрдость металла с помощью отпуска

Посредством отпуска уходит чрезмерная твёрдость и ломкость материала, приобретенная при закалке. Отпуск по сути - это тот же нагрев до критической точки и медленное охлаждение на воздухе, когда структурная решетка вновь изменяется.

  • Отпуск при низких температурах требует несильного нагрева до 250ºС. Он убирает структурное напряжение и сохраняет высокую прочность. Подходит для режущего и колющего инструментария из углеродистого материала, а также для низколегированной стали.
  • Отпуск при средних температурах уже требует интенсивного накала в интервале от 350ºС до 500ºС. Он позволяет добиться таких превращений атомов, когда структура становится однородно мелкозернистой, а посему - упругой и износостойкой. Такому отпуску подвергают детали под динамичной нагрузкой - рессоры, спирали.
  • Отпуск при высоких температурах требует сильного накала в интервале от 500ºС до 700ºС. Тогда происходит структурный сдвиг, возвращающий излишне закалённой детали вязкость и пластичность с сохранением высочайшей прочности. Такого отпуска требуют детали для ударных нагрузок.

Резюмируя, следует уточнить картину процесса при отпуске. В первом случае в металле будет наблюдаться слабый распад, во втором - распад произойдет, а перестройка структуры не начнётся, в третьем - произойдёт перестройка структуры либо кристаллического строения зёрен.

  • 6. Определение твёрдости методом Бринелля (см. Лр№ 1).
  • 7. Определение твёрдости методом Роквелла (см. Лр№ 2).
  • 8.Понятие о сплаве, компоненте, фазе, системе.
  • 9.Диаграмма состояния двойного сплава «свинец-сурьма».
  • 10. Диаграмма состоянияжелезоуглеродистых сплавов системы «железо-цементит»
  • 11. Структурные составляющие железоуглеродистых сплавов.
  • 12. Исходные материалы и продукты доменной плавки.
  • 13. Доменная печь, ее устройство и работа.
  • 14. Получение стали в кислородных конвертерах.
  • 15. Белые чугуны, их область применения.
  • 16. Серые чугуны, их маркировка и область применения.
  • 17. Высокопрочные чугуны, их маркировка и область применения.
  • 18. Ковкие чугуны, их маркировка и область применения.
  • 19. Углеродистые конструкционные качественные стали, маркировка и область применения.
  • 20. Углеродистые инструментальные стали, маркировка и область применения.
  • 21. Легированные стали, их классификация и маркировка.
  • 22. Латуни и бронзы, их маркировка и область применения.
  • 23. Алюминиевые сплавы, их маркировка и область применения.
  • 24. Коррозия металлов, её виды и методы борьбы с ней.
  • 25. Антифрикционные сплавы, их маркировка и область применения.
  • 26. Металлокерамические твердые сплавы, их маркировка и область применения.
  • 27. Отжиг и нормализация. Виды отжига.
  • 28. Закалка. Виды закалок.
  • 29. Отпуск. Виды отпуска.
  • 30. Химико-термическая обработка, ее виды.
  • 31. Модельный комплект, его назначение и состав.
  • 32. Литье в многократные (постоянные) метал­лические формы (кокили)
  • 33. Центробежное литье
  • 34. Литье в оболочковые формы.
  • 35. Точное литье по выплавляемым моделям
  • 36. Сущность обработки под давлением. Пластическая деформация металлов.
  • 37. Явление возврата и рекристаллизации.
  • 38. Понятие о прокатном производстве. Прокатка, ее виды.
  • 39. Прессование, виды прессования.
  • 40. Волочение, применяемое оборудование, получаемая продукция.
  • 41. Ковка, виды операций ковки, применяемое оборудование.
  • 43. Металлургические процессы при сварке. Сварочные напряжения и деформации, причины их появления и методы предупреждения.
  • 44. Электродуговая сварка, сущность процесса, применяемое оборудование.
  • 45. Виды электродов, их покрытие.
  • 46. Дуговая сварка под флюсом и в среде защитных газов. Электрошлаковая сварка.
  • 47. Исходные материалы для газовой сварки.
  • 48. Оборудование и принадлежности для газовой сварки и резки.
  • 49. Технология газовой сварки и резки
  • 50. Пайка, сущность процесса. Припои, флюсы их назначение и состав.
  • 51. Основные части и элементы резца.
  • 52. Углы резца.
  • 53. Элементы режима резания при точении.
  • 54. Устройство токарно-винторезного станка.
  • 55. Устройство горизонтально-фрезерного станка.
  • 56. Процесс сверления и его особенности.
  • 57. Электроискровая обработка металлов.
  • 58. Термореактивные пластмассы, их виды, состав и применение.
  • 59.Состав и классификация лакокрасочных материалов.
  • 60.Состав и классификация клеевых материалов.
  • 61. Общие сведения о резине. Резиновые смеси, их состав.
  • 62.Общие сведения о древесине, её физико-механические свойства.
  • 63.Разновидности древесных материалов
  • 64.Прокладочные материалы.
  • 28. Закалка. Виды закалок.

    Закалка – нагрев стали выше температуры фазовых превращений с последующим охлаждением по определённому режиму для получения нужной структуры и повышения твердости и прочности.

    Процесс закалки стали заключается в ее нагреве до определенной температуры (на 30…50° выше линии GSKпо диаграммеFе -Fе 3 С), выдержке и последующем быстром охлаждении в воде, масле, расплавленных солях или других средах.

    Доэвтектоидные стали надо на­гревать примерно на 30...50° выше критической точки А с3 (линияGS):tзак= А с3 + 30…50°С

    Заэвтектоидные стали следует нагревать под закалку выше А с1 (линияSK) на 30...50°.

    Масла имеют скорость охлаждения в интервале мартенситного превращения в 10 раз меньшую, чем вода, что уменьшает возможность возникновения дефектов при закалке.

    Существуют следующие виды закалок:

    Закалка в одном охладителе - самая распространен­ная - нагретое до температуры закалки изделие погружают в охлаж­дающую среду до полного охлаждения. (угле­родистые стали в воде, а легированные стали - в масле). Этот способ прост, но может вызвать значительные внутренние на­пряжения.

    Прерывистая закалка (закалка в двух средах) при­меняется для предупреждения появления внутренних напряжений в изделии. Этот способ используют при закалке крупных изделий из конструк­ционной углеродистой и низколегированной стали. Нагретое до нужной температуры изделие сначала резко охлаждают в воде до 300...200 °С, затем переносят в масло или на воздух, где оно медленно охлаждается. Недостаток - трудность регулирования времени вы­держки.

    Ступенчатая закалка - на­гретое изделие охлаждают, погружая в соляную ванну, температура которой превышает температуру начала мартенситного превращения данной стали. Затем изде­лие выдерживают в ванне для выравнивания темпера­туры по всему его объему и охлаждают на воздухе до нормальной температуры, что снижает внутренние на­пряжения. Её приме­няют для тонких стальных изделий из углеродистой стали.

    Закалка с самоотпуском (закалка по цветам побежалости) заключается в том, что изделие охлаждают от температуры закалки в охлаждающей среде только в течение времени, которое необходимо для его прока­ливания на определенную глубину. Дальнейшее охлаж­дение идет на воздухе. При этом осуществляется отпуск за счет теплоотдачи из внутренних слоев изделия. Дан­ный способ применяют для закалки ударного инстру­мента (зубила, кузнечный инструмент и др.).

    Поверхностная закалка применяется для увеличения износостойкости, твёрдости и прочности деталей, воспринимающих ударную нагрузку (зубчатые колеса, валы и др.). Она включает нагрев по­верхностного слоя изделия до температуры закалки и охлаждение для получения мартенситной структуры в поверхностном слое при сохранении вязкой сердцевины.

    Различают следующие виды нагрева при поверхност­ной закалке: нагрев пламенем газовой горелки и нагрев токами высокой частоты.

    29. Отпуск. Виды отпуска.

    Отпуск - это нагрев закаленной стали до температуры ниже критической А с1 , выдержка при этой температуре и последующее охлаждение (обычно на воздухе).

    Различают следующие виды отпуска: низкий, средний, высокий.

    Низкий отпуск - нагрев закаленной стали до 250°С для снижения внутренних напряжений при сохранении высокой твердости. Его применяют для инструментов и изделий, которые должны обладать высокой твердостью и износостойкостью. Получаемая структура – мартенсит отпуска.

    Средний отпуск - нагрев закаленной стали до 350...450°С, который приводит к пони­жению твердости и повышению вязкости стали по срав­нению с низким отпуском. Получаемая микроструктура троостит. Его применяют для пру­жин, штампов, рессор, ударного инструмента и др.

    Высокий отпуск - нагрев закаленной стали до 450...650°С, который способствует по­лучению наибольшей вязкости при сохранении доста­точно высокой прочности. Твердость закаленной стали сильно снижается и обра­зуется структура сорбит. Закалку деталей машин на мартенсит с последую­щим высоким отпуском на сорбит назы­вают улучшением. Сорбит отпуска с зернистой формой цементита имеет более высокие показатели прочности и вязкости, чем сорбит закалки с пластинчатой формой цементита.

    Обработка холодом - заключается в обработке закаленных изделий холодом при температурах порядка - 80°С и ниже. Об­работка холодом основана на том, что остаточный аустенит, находящийся в структуре закаленной стали при низких температурах, распадается в результате возникновения внутренних на­пряжений. Данный метод повышает твердость режущего инструмента, стабилизирует размеры измерительных ин­струментов и др. В промышленности применяют спе­циальные установки, в которых охладителями служат жидкий кислород (-183 °С), жидкий азот (-195 °С), смесь из твердой углекислоты (сухой лед) с денатурированным спиртом (-78,5 °С).

    Технологии придания большей твердости металлам и сплавам совершенствовались в течение долгих веков. Современное оборудование позволяет проводить термическую обработку таким образом, чтобы значительно улучшать свойства изделий даже из недорогих материалов.

    Закалка (мартенситное превращение) — основной способ придания большей твердости сталям. В этом процессе изделие нагревают до такой температуры, что железо меняет кристаллическую решетку и может дополнительно насытиться углеродом. После выдержки в течение определенного времени, сталь охлаждают. Это нужно сделать с большой скоростью, чтобы не допустить образования промежуточных форм железа.
    В результате быстрого превращения получается перенасыщенный углеродом твердый раствор с искаженной кристаллической структурой. Оба эти фактора отвечают за его высокую твердость (до HRC 65) и хрупкость.
    Большинство углеродистых и инструментальных сталей при закаливании нагревают до температуры от 800 до 900С, а вот быстрорежущие стали Р9 и Р18 калятся при 1200-1300С.

    Микроструктура быстрорежущей стали Р6М5: а) литое состояние; б) после ковки и отжига;
    в) после закалки; г) после отпуска. ×500.

    Режимы закалки

    • Закалка в одной среде

    Нагретое изделие опускают в охлаждающую среду, где оно остается до полного остывания Это самый простой по исполнению метод закалки, но его можно применять только для сталей с небольшим (до 0,8%) содержанием углерода либо для деталей простой формы. Эти ограничения связаны с термическими напряжениями, которые возникают при быстром охлаждении — детали сложной формы могут покоробиться или даже получить трещины.

    • Ступенчатая закалка

    При таком способе закалки изделие охлаждают до 250-300С в соляном растворе с выдержкой 2-3 минуты для снятия термических напряжений, а затем завершают охлаждение на воздухе. Это позволяет не допускать появления трещин или коробления деталей. Минус этого метода в сравнительно небольшой скорости охлаждения, поэтому его применяют для мелких (до 10 мм в поперечнике) деталей из углеродистых или более крупных — из легированных сталей, для которых скорость закалки не столь критична.

    • Закалка в двух средах

    Начинается быстрым охлаждением в воде и завершается медленным — в масле. Обычно такую закалку используют для изделий из инструментальных сталей. Основная сложность заключается в расчете времени охлаждения в первой среде.

    • Поверхностная закалка (лазерная, токами высокой частоты)

    Применяется для деталей, которые должны быть твердыми на поверхности, но иметь при этом вязкую сердцевину, например, зубья шестеренок. При поверхностной закалке внешний слой металла разогревается до закритических значений, а затем охлаждается либо в процессе теплоотвода (при лазерной закалке), либо жидкостью, циркулирующей в специальном контуре индуктора (при закалке током высокой частоты)

    Отпуск

    Закаленная сталь становится чрезмерно хрупкой, что является главным недостатком этого метода упрочнения. Для нормализации конструкционных свойств производят отпуск — нагрев до температуры ниже фазового превращения, выдержку и медленное охлаждение. При отпуске происходит частичная «отмена» закалки, сталь становится чуть менее твердой, но более пластичной. Различают низкий (150-200С, для инструмента и деталей с повышенной износостойкостью), средний (300-400С, для рессор) и высокий (550-650, для высоконагруженных деталей) отпуск.

    Таблица температур закалки и отпуска сталей

    № п/п Марка стали Твёрдость (HRCэ) Температ. закалки, град.С Температ. отпуска, град.С Температ. зак. ТВЧ, град.С Температ. цемент., град.С Температ. отжига, град.С Закал. среда Прим.
    1 2 3 4 5 6 7 8 9 10
    1 Сталь 20 57…63 790…820 160…200 920…950 Вода
    2 Сталь 35 30…34 830…840 490…510 Вода
    33…35 450…500
    42…48 180…200 860…880
    3 Сталь 45 20…25 820…840 550…600 Вода
    20…28 550…580
    24…28 500…550
    30…34 490…520
    42…51 180…220 Сеч. до 40 мм
    49…57 200…220 840…880
    <= 22 780…820 С печью
    4 Сталь 65Г 28…33 790…810 550…580 Масло Сеч. до 60 мм
    43…49 340…380 Сеч. до 10 мм (пружины)
    55…61 160…220 Сеч. до 30 мм
    5 Сталь 20Х 57…63 800…820 160…200 900…950 Масло
    59…63 180…220 850…870 900…950 Водный раствор 0,2…0,7% поли-акриланида
    «— 840…860
    6 Сталь 40Х 24…28 840…860 500…550 Масло
    30…34 490…520
    47…51 180…200 Сеч. до 30 мм
    47…57 860…900 Водный раствор 0,2…0,7% поли-акриланида
    48…54 Азотирование
    <= 22 840…860
    7 Сталь 50Х 25…32 830…850 550…620 Масло Сеч. до 100 мм
    49…55 180…200 Сеч. до 45 мм
    53…59 180…200 880…900 Водный раствор 0,2…0,7% поли-акриланида
    < 20 860…880
    8 Сталь 12ХН3А 57…63 780…800 180…200 900…920 Масло
    50…63 180…200 850…870 Водный раствор 0,2…0,7% поли-акриланида
    <= 22 840…870 С печью до 550…650
    9 Сталь 38Х2МЮА 23…29 930…950 650…670 Масло Сеч. до 100 мм
    <= 22 650…670 Нормализация 930…970
    HV > 670 Азотирование
    10 Сталь 7ХГ2ВМ <= 25 770…790 С печью до 550
    28…30 860…875 560…580 Воздух Сеч. до 200 мм
    58…61 210…230 Сеч. до 120 мм
    11 Сталь 60С2А <= 22 840…860 С печью
    44…51 850…870 420…480 Масло Сеч. до 20 мм
    12 Сталь 35ХГС <= 22 880…900 С печью до 500…650
    50…53 870…890 180…200 Масло
    13 Сталь 50ХФА 25…33 850…880 580…600 Масло
    51…56 850…870 180…200 Сеч. до 30 мм
    53…59 180…220 880…940 Водный раствор 0,2…0,7% поли-акриланида
    14 Сталь ШХ15 <= 18 790…810 С печью до 600
    59…63 840…850 160…180 Масло Сеч. до 20 мм
    51…57 300…400
    42…51 400…500
    15 Сталь У7, У7А НВ <= 187 740…760 С печью до 600
    44…51 800…830 300…400 Вода до 250, масло Сеч. до 18 мм
    55…61 200…300
    61…64 160…200
    61…64 160…200 Масло Сеч. до 5 мм
    16 Сталь У8, У8А НВ <= 187 740…760 С печью до 600
    37…46 790…820 400…500 Вода до 250, масло Сеч. до 60 мм
    61…65 160…200
    61…65 160…200 Масло Сеч. до 8 мм
    61…65 160…180 880…900 Водный раствор 0,2…0,7% поли-акриланида
    17 Сталь У10, У10А НВ <= 197 750…770
    40…48 770…800 400…500 Вода до 250, масло Сеч. до 60 мм
    50…63 160…200
    61…65 160…200 Масло Сеч. до 8 мм
    59…65 160…180 880…900 Водный раствор 0,2…0,7% поли-акриланида
    18 Сталь 9ХС <= 24 790…810 С печью до 600
    45…55 860…880 450…500 Масло Сеч. до 30 мм
    40…48 500…600
    59…63 180…240 Сеч. до 40 мм
    19 Сталь ХВГ <= 25 780…800 С печью до 650
    59…63 820…850 180…220 Масло Сеч. до 60 мм
    36…47 500…600
    55…57 280…340 Сеч. до 70 мм
    20 Сталь Х12М 61…63 1000…1030 190…210 Масло Сеч. до 140 мм
    57…58 320…350
    21 Сталь Р6М5 18…23 800…830 С печью до 600
    64…66 1210…1230 560…570 3-х кратн. Масло, воздух В масле до 300…450 град., воздух до 20
    26…29 780…800 Выдержка 2…3 часа, воздух
    22 Сталь Р18 18…26 860…880 С печью до 600
    62…65 1260…1280 560…570 3-х кратн. Масло, воздух В масле до 150…200 град., воздух до 20
    23 Пружин. сталь Кл. II 250…320 После холодной навивки пружин 30-ть минут
    24 Сталь 5ХНМ, 5ХНВ >= 57 840…860 460…520 Масло Сеч. до 100 мм
    42…46 Сеч. 100..200 мм
    39…43 Сеч. 200..300 мм
    37…42 Сеч. 300..500 мм
    НV >= 450 Азотирование. Сеч. св. 70 мм
    25 Сталь 30ХГСА 19…27 890…910 660…680 Масло
    27…34 580…600
    34…39 500…540
    «— 770…790 С печью до 650
    26 Сталь 12Х18Н9Т <= 18 1100…1150 Вода
    27 Сталь 40ХН2МА, 40ХН2ВА 30…36 840…860 600…650 Масло
    34…39 550…600
    28 Сталь ЭИ961Ш 27…33 1000…1010 660…690 Масло 13Х11Н2В2НФ
    34…39 560…590 При t>6 мм вода
    29 Сталь 20Х13 27…35 1050 550…600 Воздух
    43,5…50,5 200
    30 Сталь 40Х13 49,5…56 1000…1050 200…300 Масло

    Термообработка цветных металлов

    Сплавы на основе других металлов не отвечают на закалку столь же ярко, как стали, но их твердость тоже можно повысить термообработкой. Обычно используют сочетание закалки и предварительного отжига (нагрева выше точки фазового превращения с медленным охлаждением).

    • Бронзы (сплавы меди) подвергают отжигу при температуре чуть ниже температуры плавления, а потом закалке с охлаждением водой. Температура закалки от 750 до 950С в зависимости от состава сплава. Отпуск при 200-400С производят в течение 2-4 часов. Наибольшие показатели твердости, до HV300 (около HRC 34) можно при этом получить для изделий из бериллиевых бронз.
    • Твердость серебра можно повысить отжигом до температуры, близкой к температуре плавления (тусклый красный цвет) с последующей закалкой.
    • Различные сплавы никеля подвергают отжигу при 700-1185С, такой широкий диапазон определяется разнообразием их составов. Для охлаждения используют соляные растворы, частички которых потом удаляют водой либо защитные газы, препятствующие окислению (сухой азот, сухой водород).

    Оборудование и материалы

    Для нагрева металла при термообработке используются 4 основных типа печей:
    — соляная электродная ванна
    — камерная печь
    — печь непрерывного горения
    — вакуумная печь

    В качестве закалочных сред, в которых происходит охлаждение, используются жидкости (вода, минеральное масло, специальные водополимеры (Термат), растворы солей), воздух и газы (азот, аргон) и даже легкоплавкие металлы. Сам агрегат, где происходит охлаждение, называется закалочная ванна и представляет собой емкость, в которой происходит ламинарное перемешивание жидкости. Важной характеристикой закалочной ванны является качество удаления паровой рубашки.

    Старение и другие методы повышения твердости

    Старение — еще один вид термообработки, позволяющий повысить твердость сплавов алюминия, магния, титана, никеля и некоторых нержавеющих сталей, которые подвергают предварительной закалке без полиморфного превращения. В процессе старения увеличиваются твердость и прочность, а пластичность понижается.

    • Сплавы алюминия, например, дуралюмины (4-5% меди) и сплавы с добавлением никеля и железа выдерживают в пределах часа при температуре 100-180С
    • Сплавы никеля подвергают старению в 2-3 этапа, что в сумме занимает от 6 до 30 часов при температурах от 595 до 845С. Некоторые сплавы подвергают предварительной закалке при 790-1220С. Детали из никелевых сплавов помещают в дополнительный контейнеры, чтобы предохранить от контакта с воздухом. Для нагрева используют электрические печи, для мелких деталей могут применяться соляные электродные ванны.
    • Мартенситно-стареющие стали (высоколегированные безуглеродистые сплавы железа) стареют около 3 часов при 480-500С после предварительного отжига при 820С

    Химико-термическая обработка - насыщение поверхностного слоя легирующими элементами,

    • неметаллическими: углеродом (цементация) и азотом (азотирование) применяются для повышения износостойкости колен, валов, шестерней из низкоуглеродистых сталей
    • металлическими: например, кремнием (силицирование) и хромом помогает повысить износо- и коррозионную стойкость деталей

    Цементирование и азотирование производят в шахтных электропечах. Существуют также универсальные агрегаты, позволяющие проводить весь спектр работ по термохимической обработке стальных изделий.

    Обработка давлением (наклеп) — увеличение твердости в результате пластической деформации при относительно низких температурах. Таким образом происходит упрочнение низкоуглеродистых сталей при холодной объемной штамповке, а также чистых меди и алюминия.

    В процессе термической обработки изделия из стали могут претерпевать поразительные превращения, приобретая износостойкость и твердость, в разы большую чем у исходного материала. Диапазон изменения твердости сплавов из цветных металлов при термической обработке гораздо меньше, но их уникальные свойства зачастую и не требуют масштабного улучшения.