Фазовая скорость волны. Интерференция волн

Стоячие волны могут образовываться при различных условиях. Этот феномен легче всего продемонстрировать в условиях ограниченного пространства. Такого эффекта можно добиться с помощью комбинирования двух колебаний с одинаковой длиной волны, распространяющихся в противоположных направлениях. Интерференция двух сигналов дает результирующую волну, которая, на первый взгляд, не движется (то есть стоячая).

Важным условием является то, что энергия должна поступать в систему с определенной скоростью. Это означает, что частота возбуждения должна быть приблизительно равной собственной частоте колебаний. Такое понятие также известно как резонанс. Стоячие волны всегда связаны с . Возникновение резонанса можно определить по резкому увеличению амплитуды результирующих колебаний. На создание стоячих волн затрачивается гораздо меньше энергии, по сравнению с бегущими волнами, имеющими такие же амплитуды.

Не стоит забывать и о том, что в любой системе, где есть стоячие волны, есть и многочисленные собственные частоты. Многообразие всех возможных стоячих волн известно как гармоники системы. Простейшая из гармоник называется фундаментальной или первой. Последующие стоячие волны называются второй, третья и т.д. Гармоники, которые отличаются от фундаментальной, иногда называют подтекстовыми.

Виды стоячих волн

В зависимости от физических характеристик существуют несколько видов стоячих волн. Все их можно условно разделить на три большие группы: одномерные, двумерные и трехмерные.

Одномерные стоячие волны появляются тогда, когда имеется плоское замкнутое пространство. В этом случае волна может распространяться только в одном направлении: от источника к границе пространства. Существуют три подгруппы одномерных стоячих волн: с двумя узлами на концах, с одним узлом посередине и с узлом на одном из концов волны. Узел – это точка с наименьшей амплитудой и энергией сигнала.

Двумерные стоячие волны возникают в случае, когда колебания распространяются в двух направлениях от источника. После отражения от преграды возникает стоячая волна.

Трехмерные стоячие волны – это сигналы, распространяющиеся в пространстве с конечной скоростью. Узлы при таком виде колебаний будут представлять собой двумерные поверхности. Это значительно осложняет их исследование. Примером таких волн может служить орбита движения электрона в атоме.

Практическое значение стоячих волн

Стоячие волны имеют большое значение , так как звук является комбинацией нескольких колебаний. Правильный расчет длины и жесткости струн позволяет добиться наилучшего звучания того или иного инструмента.

Стоячие волны также очень важны . В методе исследования частиц с помощью рентгеновской спектроскопии обработка отраженного сигнала позволяет выяснить приблизительный количественный и качественный состав объекта.

    За удерживаемый конец резко дергают вверх и затем приводят его в исходное положение. Образовавшийся на трубке гребень движется вдоль трубки до стены, где он отражается. При этом отраженная волна имеет форму впадины, т. е. находится ниже среднего положения трубки, в то время как исходная пучность находилась выше. С чем связано это различие?

    Представим конец резиновой трубки, закрепленный в стене. Поскольку он закреплен, он не может двигаться. Направленная вверх сила пришедшего импульса стремится заставить двигаться его вверх (см. рис.). Однако поскольку он не может двигаться, то должна присутствовать равная и противоположно направленная вниз сила, исходящая от опоры и приложенная к концу резиновой трубки, и поэтому отраженный импульс располагается пучностью вниз. Разность фаз отраженного и исходного импульсов равна 180°.

    Когда рука, удерживающая резиновую трубку, движется вверх и вниз и частота движения постепенно увеличивается, то достигается точка, при которой получается одиночная пучность (рис. а). Дальнейшее увеличение частоты колебания руки приведет к образованию двойной пучности (рис. 6). Если вы прохронометрируете частоту движений руки, то вы увидите, что их частота удвоилась. Поскольку трудно двигать рукой более быстро, лучше применить механический вибратор (рис. в).

    Металлический стержень внутри электромагнитной катушки вибрирует с частотой, управляемой генератором. Образованные волны называются стоячими или стационарными волнами . Они образуются, потому что отраженная волна накладывается на падающую. Это явление известно как . Здесь присутствуют две волны: падающая и отраженная. Они имеют одинаковые , но распространяются в противоположных направлениях. Это бегущие волны , но они интерферируют друг с другом и таким образом создают стоячие волны.

    Это имеет такие последствия:

    а) все частицы в каждой половине длины волны колеблются в фазе, т. е. все они движутся в одном направлении в одно время;

    б) каждая частица имеет амплитуду, отличную от амплитуды следующей частицы;

    в) разность фаз между колебаниями частиц одной полуволны и колебаниями частиц последующей полуволны равна 180°.

    Это попросту означает, что они либо отклонены максимально в противоположные стороны в одно время, либо, если они оказываются в среднем положении, начинают двигаться в противоположных направлениях. Это показано на рисунке, где видно, что некоторые частицы (обозначенные N) не движутся (они имеют нулевую амплитуду), поскольку действующие на них силы всегда равны и противоположны.

    Эти точки называются узловыми или узлами, и расстояние между двумя последующими узлами составляет половину длины волны, т. е. 1 / 2 λ.

    Максимальное движение происходит в точках, обозначенных А, и амплитуда этих точек вдвое больше амплитуды падающей волны. Эти точки называются пучностями , и расстояние между двумя последующими пучностями составляет половину длины волны. Расстояние между узлом и следующей пучностью составляет одну четвертую длины волны, т. е. 1 / 4 λ.

    Стоячая волна отличается от бегущей. В бегущей волне :

    а) все частицы имеют одинаковую амплитуду колебаний;

Любая волна представляет собой колебание. Колебаться может жидкость, электромагнитное поле или любая другая среда. В повседневной жизни каждый человек ежедневно сталкивается с тем или иным проявлением колебаний. Но что такое стоячая волна?

Представьте себе вместительную емкость, в которую налита вода - это может быть тазик, ведро или ванна. Если теперь по жидкости похлопать ладонью, то от центра соударения во все стороны побегут волнообразные гребни. Кстати, они так и называются - бегущие волны. Их характерный признак - перенос энергии. Однако, изменяя частоту хлопков, можно добиться практически полного видимого их исчезновения. Возникает впечатление, что масса воды становится желеобразной, а движение происходит только вниз и вверх. Стоячая волна - это и есть данное смещение. Данное явление возникает потому, что каждая ушедшая от центра удара волна достигает стенок емкости и отражается обратно, где пересекается (интерферирует) с основными волнами, идущими в противоположном направлении. Стоячая волна появляется лишь в том случае, если отраженные и прямые совпадают по фазе, но различны по амплитуде. В противном случае вышеуказанной интерференции не происходит, так как одно из свойств волновых возмущений с разными характеристиками - это способность сосуществовать в одном и том же объеме пространства, не искажая друг друга. Можно утверждать, что стоячая волна является суммой двух встречно направленных бегущих, что приводит к падению их скоростей до нуля.

Почему же в приведенном примере вода продолжает колебаться в вертикальном направлении? Очень просто! При наложении волн с одинаковыми параметрами в определенные моменты времени колебания достигают своего максимального значения, называемые пучностями, а в другие полностью гасятся (узлы). Изменяя частоту хлопков, можно как полностью погасить горизонтальные волны, так и усилить вертикальные смещения.

Стоячие волны представляют интерес не только для практиков, но и для теоретиков. В частности, одна из моделей гласит, что любая материальная частица характеризуется какой-то определенной (вибрацией): электрон колеблется (дрожит), нейтрино колеблется и т.д. Далее, в рамках гипотезы, предположили, что упомянутая вибрация - следствие интерференции каких-то, пока еще не открытых возмущений среды. Другими словами, авторы утверждают, что там, где те удивительные волны формируют стоячую, возникает материя.

Не менее интересно явление Резонанса Шумана. Оно заключается в том, что при некоторых условиях (ни одна из предложенных гипотез пока не принята за единственно верную) в пространстве между земной поверхностью и нижней границей ионосферы возникают стоячие электромагнитные волны, частоты которых лежат в низком и сверхнизком диапазонах (от 7 до 32 герц). Если образовавшаяся в промежутке «поверхность - ионосфера» волна обогнет планету и попадет в резонанс (совпадение фаз), то сможет существовать продолжительное время без затухания, самоподдерживаясь. Резонанс Шумана представляет особый интерес потому, что частота волн практически совпадает с естественными альфа-ритмами человеческого мозга. К примеру, исследованиями данного явления в России занимаются не только физики, но и такая крупная организация, как «Институт мозга человека».

На стоячие обратил внимание еще гениальный изобретатель Никола Тесла. Считается, что он мог использовать это явлене в некоторых своих устройствах. Одним из источников их появления в атмосфере принято считать грозы. Электрические разряды возбуждают электромагнитное поле и генерируют волны.

Очень важный случай интерференции наблюдается при наложении плоских волн с одинаковой амплитудой. Возникающий в результате этого колебательный процесс называется стоячей волной .

Практически стоячие волны возникают при отражении волн от преград. Падающая на преграду волна и бегущая ей навстречу отраженная волна, налагаясь друг на друга, дают стоячую волну.

Рассмотрим результат интерференции двух синусоидальных плоских волн одинаковой амплитуды, распространяющихся в противоположных направлениях.

Для простоты рассуждений допустим, что обе волны вызывают в начале координат колебания в одинаковой фазе.

Уравнения этих колебаний имеют вид:

.

Складывая оба уравнения и преобразовывая результат, по формуле для суммы синусов получим:

- уравнение стоячей волны .

Сравнивая это уравнение с уравнением гармонических колебаний, мы видим, что амплитуда результирующих колебаний равна:

.

Так как , а , то .

.

В точках среды, где , колебания отсутствуют, т.е. . Эти точки называются узлами стоячей волны .

В точках, где , амплитуда колебаний имеет наибольшее значение, равное . Эти точки называются пучностями стоячей волны . Координаты пучностей находятся из условия , т.к. , то .

Отсюда :

Аналогично координаты узлов находятся из условия:

.

Откуда :

.

Из формул координат узлов и пучностей следует, что расстояние между соседними пучностями, также как и расстояния между соседними узлами, равно . Пучности и узлы сдвинуты друг относительно друга на четверть длины волны.

Сравним характер колебаний в стоячей и бегущей волне. В бегущей волне каждая точка совершает колебания, амплитуда которых не отличается от амплитуды других точек. Но колебания различных точек происходят с различными фазами .

В стоячей волне все частицы среды, находящиеся между двумя соседними узлами колеблются в одной и той же фазе, но с разными амплитудами. При переходе через узел фаза колебаний скачкообразно изменяется на , т.к. изменяется знак .

Графически стоячая волна может быть изображена следующим образом:

В момент времени, когда , все точки среды имеют максимальные смещения, на-правление которых определяется знаком . Эти смещения показаны на рисунке сплошными стрелками.

Спустя четверть периода, когда , смещения всех точек равны нулю. Частицы проходят через линию с различными скоростями.

Спустя еще четверть периода, когда , частицы опять будут иметь максимальные смещения, но противоположного направления (пунктирные стрелки).

При описании колебательных процессов в упругих системах за колеблющуюся величину можно принять не только смещение, но и скорость частиц, а также и величину относительной деформации среды.


Для нахождения закона изменения скорости стоячей волны продифференцируем по уравнение смещения стоячей волны и для нахождения закона изменения деформации продифференцируем по уравнение стоячей волны.

.

Анализируя эти уравнения, мы видим, что узлы и пучности скорости совпадают с узлами и пучностями смещения; узлы и пучности деформации совпадают соответственно с пучностями и узлами скорости и смещения.

Колебания струны

В закрепленной с обоих концов натянутой струне при возбуждении поперечных колебаний устанавливаются стоячие волны, причем в местах закрепления струны должны располагаться узлы. Поэтому в струне возбуждаются только такие колебания, половина длины которых укладывается на длине струны целое число раз.

Отсюда вытекает условие:

где - длина струны.

Или иначе . Этим длинам волн соответствуют частоты , где - фазовая скорость волны. Величина ее определяется силой натяжения струны и ее массой.

При - основная частота.

При - собственные частоты колебаний струны или обертоны .

Эффект Допплера

Рассмотрим простейшие случаи, когда источник волн и наблюдатель движутся относительно среды вдоль одной прямой:

1. Источник звука движется относительно среды со скоростью , приемник звука покоится.

В этом случае за период колебаний звуковая волна отойдет от источ-ника на расстояние , а сам источник сместится на расстояние равное .

Если источник удалять от приемника, т.е. двигать в направлении обратном направлению распространения волны, то длина волны .

Если источник звука приближать к приемнику, т.е. двигать в направлении распространения волны, то .

Частота звука воспринимаемая приемником равна:

Подставим вместо их значения для обоих случаев:

С учетом того, что , где - частота колебаний источника, равенство примет вид :

Разделим и числитель и знаменатель этой дроби на , тогда:

2. Источник звука неподвижен, а приемник движется относительно среды со скоростью .

В этом случае длина волны в среде не изменяется и по-прежнему равна . Вместе с тем две последовательные амплитуды, отличающиеся по времени на один период колебаний , дойдя до движущегося приемника, будут отличаться по времени в моменты встречи волны с приемником на отрезок времени , величина которого больше или меньше в зависимости от того, удаляется или приближается приемник к источнику звука. За время звук распространяется на расстояние , а приемник сместится на расстояние . Сумма этих величин и дает нам длину волны :

Период колебаний, воспринимаемых приемником , связан с частотой этих колебаний соотношением:

Подставив вместо его выражение из равенства (1), получим:

.

Т.к. , где - частота колебаний источника, а , то:

3. Источник и приемник звука движутся относительно среды. Соединяя результаты, полученные в двух предыдущих случаях, получим:

Звуковые волны

Если упругие волны, распространяющиеся в воздухе, имеют частоту в пределах от 20 до 20000 Гц, то, достигнув человеческого уха, они вызывают ощущение звука. Поэтому волны лежащие в этом диапазоне частот называются звуковыми. Упругие волны с частотой менее 20 Гц называются инфразвуком . Волны с частотой более 20000 Гц называются ультразвуком . Ультразвуки и инфразвуки человеческое ухо не слышит.

Звуковые ощущения характеризуются высотой звука, тембром и громкостью. Высота звука определяется частотой колебаний. Однако источник звука испускает не одну, а целый спектр частот. Набор частот колебаний, присутствующих в данном звуке, называется его акустическим спектром . Энергия колебания распределяется между всеми частотами акустического спектра. Высота звука определяется по одной - основной частоте, если на долю этой частоты приходится значительно большее количество энергии, чем на долю других частот.

Если спектр состоит из множества частот, находящихся в интервале частот от до , то такой спектр называется сплошным (пример - шум).

Если спектр состоит из набора колебаний дискретных частот, то такой спектр называется линейчатым (пример - музыкальные звуки).

Акустический спектр звука в зависимости от своего характера и от распределения энергии между частотами определяет своеобразие звукового ощущения, называемое тембром звука. Различные музыкальные инструменты имеют различный акустический спектр, т.е. отличаются тембром звука.

Интенсивность звука характеризуется раз-личными величинами: колебаниями частиц среды, их скоростями, силами давления, напряжениями в них и др.

Она характеризует амплитуду колебаний каждой из этих величин. Однако, поскольку эти величины взаимосвязаны, целесообразно ввести единую энергетическую характеристику. Такая характеристика для волн любого типа была предложена в 1877 году. Н.А. Умовым.

Вырежем мысленно из фронта бегущей волны площадку . За время эта площадка переместится на расстояние , где - скорость волны.

Обозначим через энергию единицы объема колеблющейся среды. Тогда энергия всего объема будет равна .

Эта энергия была перенесена за время волной, распространяющейся через площадку .

Разделив это выражение на и , получим энергию, переносимую волной через единицу площади в единицу времени. Эта величина обозначается буквой и носит название вектора Умова

Для звукового поля вектор Умова носит название силы звука.

Сила звука является физической характеристикой интенсивности звука. Мы оцениваем ее субъективно, как громкость звука. Человеческое ухо воспринимает звуки, сила которых превышает некоторое минимальное значение, различное для различных частот. Это значение называется порогом слышимости звука. Для средних частот порядка Гц порог слышимости порядка .

При очень большой силе звука порядка звук воспринимается кроме уха органами осязания, а в ушах вызывает болевое ощущение.

Значение интенсивности, при котором это происходит, называется порогом болевого ощущения . Порог болевого ощущения, также как и порог слышимости, зависит от частоты.

Человек обладает довольно сложным аппаратом для восприятия звуков. Звуковые колебания собираются ушной раковиной и через слуховой канал воздействуют на барабанную перепонку. Колебания ее передаются в небольшую полость, называемую улиткой. Внутри улитки расположено большое количество волокон, имеющих различную длину и натяжение и, следовательно, различные собственные частоты колебаний. При действии звука каждое из волокон резонирует на тот тон, частота которого совпадает с собственной частотой волокна. Набор резонансных частот в слуховом аппарате и определяет область воспринимаемых нами звуковых колебаний.

Субъективно оцениваемая нашим ухом громкость возрастает гораздо медленнее, чем интенсивность звуковых волн. В то время, как интенсивность возрастает в геометрической прогрессии - громкость возрастает в арифметической прогрессии. На этом основании уровень громкости определяется как логарифм отношения интенсивности данного звука к интенсивности, принятой за исходную

Единица уровня громкости называется белом . Используют и более мелкие единицы - децибелы (в 10 раз меньше бела).

где - коэффициент поглощения звука.

Величина коэффициента поглощения звука возрастает пропорционально квадрату частоты звука, поэтому низкие звуки распространяются дальше высоких.

В архитектурной акустике для больших помещений существенную роль играет реверберация или гулкость помещений. Звуки, испытывая многократные отражения от ограждающих поверхностей, воспринимаются слушателем в течении некоторого довольно большого промежутка времени. Это увеличивает силу доходящего до нас звука, однако, при слишком длительной реверберации отдельные звуки накладываются друг на друга и речь перестает восприниматься членораздельно. Поэтому стены залов покрывают специальными звукопоглощающими материалами для уменьшения реверберации.

Источником звуковых колебаний может служить любое колеблющееся тело: язычок звонка, камертон, струна скрипки, столб воздуха в духовых инструментах и т.д. эти же тела могут служить и приемниками звука, когда они приходят в движение под действием колебаний окружающей среды.

Ультразвук

Чтобы получить направленную, т.е. близко к плоской, волну размеры излучателя должны быть во много раз больше длины волны. Звуковые волны в воздухе имеют длину до 15 м, в жидких и твердых телах длина волны еще больше. Поэтому построить излучатель, который создавал бы направленную волну подобной длины, практически не представляется возможным.

Ультразвуковые колебания имеют частоту свыше 20000 Гц, поэтому длина волны их очень мала. С уменьшением длины волны уменьшается также роль дифракции в процессе распространения волн. Поэтому ультразвуковые волны могут быть получены в виде направленных пучков, подобных пучкам света.

Для возбуждения ультразвуковых волн используют два явления: обратный пьезоэлектрический эффект и магнитострикцию .

Обратный пьезоэлектрический эффект состоит в том, что пластинка некоторых кристаллов (сегнетовой соли, кварца, титаната бария и др.) под действием электрического поля слегка деформируется. Поместив ее между металлическими обкладками, на которые подается переменное напряжение, можно вызвать вынужденные колебания пластинки. Эти колебания передаются окружающей среде и порождают в ней ультразвуковую волну.

Магнитострикция заключается в том, что ферромагнитные вещества (железо, никель, их сплавы и т.д.) под действием магнитного поля деформируются. Поэтому, поместив ферромагнитный стержень в переменное магнитное поле, можно возбудить механические колебания.

Высокие значения акустических скоростей и ускорений, а также хорошо разработанные методы изучения и приема ультразвуковых колебаний, позволили использовать их для решения многих технических задач. Перечислим некоторые из них.

В 1928 г. советский ученый С.Я. Соколов предложил использовать ультразвук для целей дефектоскопии, т.е. для обнаружения скрытых внутренних дефектов типа раковин, трещин, рыхлот, шлаковых включений и др. в металлических изделиях. Если размеры дефекта превышают длину волны ультразвука, то ультразвуковой импульс отражается от дефекта и возвращается обратно. Посылая в изделие ультразвуковые импульсы, и регистрируя отраженные эхосигналы, можно не только обнаруживать наличие дефектов в изделиях, но и судить о размерах и месте расположения этих дефектов. В настоящее время этот метод широко используется в промышленности.

Направленные ультразвуковые пучки нашли широкое применение для целей локации, т.е. для обнаружения в воде предметов и определения расстояния до них. Впервые идея ультразвуковой локации была выказана выдающимся французским физиком П. Ланжевеном и разработана им во время первой мировой войны для обнаружения подводных лодок. В настоящее время принципы гидролокации используются для обнаружения айсбергов, косяков рыбы и т.д. этими методами может быть также определена глубина моря под днищем корабля (эхолот).

Ультразвуковые волны большой амплитуды широко применяются в настоящее время в технике для механической обработки твердых материалов, очистки мелких предметов (деталей часовых механизмов, трубопроводов и т.д.), помещенных в жидкость, обезгаживания и т.д.

Создавая при своем прохождении сильные пульсации давления в среде, ультразвуковые волны обуславливают целый ряд специфических явлений: измельчение (диспергирование) частиц, взвешенных в жидкости, образование эмульсий, ускорение процессов диффузии, активацию химических реакций, воздействие на биологические объекты и т.д.

Стоячие волны образуются при наложении двух одина-ковых волн, бегущих навстречу друг другу. Все, наверное, ви-дели стоячие волны в гитарных струнах. Когда в каком-либо месте оттягивают и отпускают струну, в разные стороны на-чинают разбегаться упругие поперечные волны, которые за-тем отражаются от концов струны и, накладываясь друг на друга, образуют стоячие волны (если при распространении и отражении нет затухания). Как это происходит?

При сложе-нии двух синусоидальных волн с одинаковыми частотой и ам-плитудой, но распространяющихся в разных направлениях оси x, получаем возмущение, которое описывается функцией

F(x, t) = f 0 sin(ωt kx + φ 1) + f 0 sin(ωt + kx + φ 2) = 2 f 0 cos(kx + (φ 2 — φ 1) / 2) + (φ 1 + φ 2) / 2).

Это и есть уравнение стоячей волны . В каждой точке стоя-чей волны колебания осуществляются по гармоническому закону:

F(x, t) = F 0 sin (ωt + (φ 1 + φ 2) / 2.

Амплитуда колеба-ний

| F 0 | = 2 f 0 | cos(kx + (φ 2 — φ 1) / 2)|

зависит от координа-ты x . В точках, где kx + Δφ / 2 = (n + 1 / 2)π (n — целое чис-ло, Δφ = φ 1 — φ 2), амплитуда F 0 = 0. Такие точки называют узлами стоячей волны , колебания в них отсутствуют. Точ-ки, для которых амплитуда колебаний | F 0 | = 2 f 0 максималь-на, называют пучностями стоячей волны . Расстояние Δx между соседними узлами (или соседними пучностями) рав-но половине длины бегущих волн, из которых образовалась стоячая волна:

Δx = π / k = λ / 2.

В точках между двумя соседними узлами колебания проис-ходят в одинаковой фазе, а амплитуда изменяется от нуля до максимума (в пучности, которая расположена посереди-не между узлами) и опять до нуля. Материал с сайта

При переходе через узел фаза колебаний изменяется на π, так как меняется знак F 0 . В стоячей волне возмущение сре-ды обращается в нуль одновременно во всех точках, и одно-временно во всех точках возмущение достигает максималь-ного по величине значения. Так, звучащая струна через каждый полупериод выпрямляется, а через четверть перио-да после выпрямления принимает «наиболее изогнутую» форму.

Если наблюдать колебания только в одной точке, то невозможно сказать, какая волна — бегущая или стоя-чая — вызвала эти колеба-ния. Но если следить за ко-лебаниями в нескольких точках, то картины колеба-ний в бегущей и стоячей волнах будут совершенно различны. В плоской бегу-щей волне колебания в разных точках происхо-дят с одинаковой амплиту-дой, но в различных фазах. В стоячей волне колебания в разных точках происхо-дят с разными амплитуда-ми, но в одинаковой фазе. Поэтому при наблюдении «целой картины» спутать бегущую и стоячую волны, конечно, невозможно.