Цикл Кребса: что это такое простым языком. Цикл трикарбоновых кислот (цикл Кребса) Кребс биология

Цикл Кребса

Цикл трикарбоновых кислот (цикл Кребса , цитратный цикл ) - центральная часть общего пути катаболизма , циклический биохимический аэробный процесс, в ходе которого происходит превращение двух- и трёхуглеродных соединений, образующихся как промежуточные продукты в живых организмах при распаде углеводов, жиров и белков, до CO 2 . При этом освобождённый водород направляется в цепь тканевого дыхания, где в дальнейшем окисляется до воды, принимая непосредственное участие в синтезе универсального источника энергии - АТФ .

Цикл Кребса - это ключевой этап дыхания всех клеток , использующих кислород, центр пересечения множества метаболических путей в организме. Кроме значительной энергетической роли циклу отводится также и существенная пластическая функция, то есть это важный источник молекул-предшественников, из которых в ходе других биохимических превращений синтезируются такие важные для жизнедеятельности клетки соединения как аминокислоты, углеводы, жирные кислоты и др.

Цикл превращения лимонной кислоты в живых клетках был открыт и изучен немецким биохимиком Гансом Кребсом , за эту свою работу он (совместно с Ф. Липманом) был удостоен Нобелевской премии (1953).

Стадии цикла Кребса

Субстраты Продукты Фермент Тип реакции Комментарий
1 Оксалоацетат +
Ацетил-CoA +
H 2 O
Цитрат +
CoA-SH
Цитратсинтаза Альдольная конденсация лимитирующая стадия,
превращает C 4 оксалоацетат в С 6
2 Цитрат цис -акониат +
H 2 O
аконитаза Дегидратация обратимая изомеризация
3 цис -акониат +
H 2 O
изоцитрат гидратация
4 Изоцитрат +
изоцитратдегидрогеназа Окисление образуется NADH (эквивалент 2.5 ATP)
5 Оксалосукцинат α-кетоглутарат +
CO 2
декарбоксилирование обратимая стадия,
образуется C 5
6 α-кетоглутарат +
NAD + +
CoA-SH
сукцинил-CoA +
NADH + H + +
CO 2
альфакетоглутаратдегидрогеназа Окислительное декарбоксилирование образуется NADH (эквивалентно 2.5 ATP),
регенерация C 4 пути (освобождается CoA)
7 сукцинил-CoA +
GDP + P i
сукцинат +
CoA-SH +
GTP
сукцинилкофермент А синтетаза субстратное фосфорилирование или ADP ->ATP ,
образуется 1 ATP
8 сукцинат +
убихинон (Q)
фумарат +
убихинол (QH 2)
сукцинатдегидрогеназа Окисление используется FAD как простетическая группа (FAD->FADH 2 на первой стадии реакции) в ферменте,
образуется эквивалент 1.5 ATP
9 фумарат +
H 2 O
L -малат фумараза H 2 O-присоединение
(гидратация )
10 L -малат +
NAD +
оксалоацетат +
NADH + H +
малатдегидрогеназа окисление образуется NADH (эквивалетно 2.5 ATP)

Общее уравнение одного оборота цикла Кребса:

Ацетил-КоА → 2CO 2 + КоА + 8e −

Примечания

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое "Цикл Кребса" в других словарях:

    - (цикл лимонной и трикарбоновой кислот), система биохимических реакций, посредством которой большинство организмов ЭУКАРИОТОВ получают основную энергию в результате окисления пищи. Происходит в КЛЕТКАХ МИТОХОНДРИЙ. Включает несколько химических… … Научно-технический энциклопедический словарь

    цикл Кребса - Цикл трикарбоновых кислот, цикл последовательных реакций в клетках аэробных организмов, в результате которых происходит синтез молекул АТФ Тематики биотехнологии EN Krebs cycle … Справочник технического переводчика

    цикл кребса - – метаболитический путь, приводящий к полному разрушению ацетил КоА до конечных продуктов – CO2 и H2O … Краткий словарь биохимических терминов

    цикл Кребса - trikarboksirūgščių ciklas statusas T sritis chemija apibrėžtis Baltymų, riebalų ir angliavandenių oksidacinio skaidymo organizme ciklas. atitikmenys: angl. citric acid cycle; Krebs cycle; tricarboxylic acid cycle rus. цикл Кребса; цикл лимонной… … Chemijos terminų aiškinamasis žodynas

    Tricarboxylic acid (Krebs, citric acid) cycle цикл трикарбоновых кислот, цикл Кребса. Важнейшая циклическая последовательность метаболических реакций у аэробных организмов (эу и прокариот), в результате которых происходит последовательное… … Молекулярная биология и генетика. Толковый словарь.

    То же, что трикарбоновых кислот цикл … Естествознание. Энциклопедический словарь

    Сложный цикл реакций, где в качестве катализаторов выступают ферменты; эти реакции проходят в клетках всех животных и заключаются в разложении ацетата в присутствии кислорода с выделением энергии в виде АТФ (по цепи передачи электронов) и… … Медицинские термины

    ЦИКЛ КРЕБСА, ЦИКЛ ЛИМОННОЙ КИСЛОТЫ - (citric acid cycle) сложный цикл реакций, где в качестве катализаторов выступают ферменты; эти реакции проходят в клетках всех животных и заключаются в разложении ацетата в присутствии кислорода с выделением энергии в виде АТФ (по цепи передачи… … Толковый словарь по медицине

    ЦИКЛ КРЕБСА (цикл трикарбоновых кислот - цикл лимонной кислоты) сложный циклический ферментативный процесс, при котором в организме происходит окисление пировиноградной кислоты с образованием углекислого газа, воды и энергии в виде АТФ; занимает центральное положение в общей системе… … Словарь ботанических терминов

    Цик … Википедия

Цикл Кребса. Циклический процесс окисления пировиноградной кислоты описал английский ученый Ханс Кребс. Если в клетку поступает кислород, то анаэробный процесс - гликолиз переходит в аэробный. В этом случае ПВК не восстанавливается до молочной кислоты, а переносится в митохондрии (см. § 9), где окисляется до производного уксусной кислоты. При этом одна молекула НАД + восстанавливается до НАД-Н, а один атом углерода окисляется до С0 2 (рис. 20). Таким образом, из трехуглеродной молекулы ПВК - С3Н403 образуется двухуглеродная молекула активированной уксусной кислоты. Уксусная кислота - это С 2 Н 4 0 2 , а ее сложно устроенное активированное производное, которое называют ацетилкоферментом А, или сокращенно ацетил-КоА (от лат. «ацетум» - уксус), можно в упрощенном виде выразить формулой С 2 Н 3 0-SKoA.

Рис. 20. Биологическое окисление с участием кислорода.
Слева - цикл Кребса; справа - цепь переноса электронов. ПВК - пиро-виноградная кислота; АК - ацетил-КоА; красные квадраты под номерами 1-8 - органические кислоты, переносящие в цикле Кребса остаток окисляемой уксусной кислоты; П 1 -П 4 - переносчики электронов в цепи

Ацетил-КоА, вступая в цикл Кребса, соединяется с органической кислотой (на рис. 20, - это 8), которая служит своего рода переносчиком остатка уксусной кислоты. Ацетил-КоА, соединяясь со своим переносчиком - 8, образует соединение 1, в составе которого начинается окисление остатка уксусной кислоты. Перемещаясь по ферментному конвейеру цикла Кребса (на рисунке 20 ферменты обозначены стрелками на кольце), остаток уксусной кислоты постепенно полностью окисляется. При этом образуются две молекулы С0 2 и, в результате восстановления НАД + , четыре молекулы НАД-Н, в которых запасена энергия высокоэнергетических электронов остатка уксусной кислоты. Структуры переносчиков (они также являются органическими кислотами) и самого остатка уксусной кислоты при прохождении по циклу Кребса меняются: из соединения 1 возникают соединения 2, 3, 4, 5, 6, 7 и, наконец, 8, которое готово снова присоединить остаток уксусной кислоты (АК). Таким образом, круг замыкается.

Самый важный результат процессов, происходящих в цикле Кребса, - образование богатых энергией молекул НАД-Н. На последнем этапе аэробного процесса, а именно в цепи переноса электронов, энергия молекул НАД-Н служит для синтеза универсального «аккумулятора» энергии - молекул АТФ.

Цепь переноса электронов. Окислительное фосфорилирование. На этом этапе высокоэнергетические электроны НАД-Н перемещаются по многоступенчатой цепи переносчиков, как по лестнице, идущей вниз. При переходе с высшей ступени на низшую электрон теряет энергию, которая используется для образования высокоэнергетической связи в АТФ.

Переносчик электронов на высшей ступени способен передать электрон более сильному акцептору электронов на низшей ступени. Переносчик-акцептор становится донором электрона, когда передает его еще более сильному акцептору. Самый сильный акцептор электрона - кислород, расположенный в конце цепи (рис. 20, справа).

При прохождении высокоэнергетического электрона НАД-Н по «ступенькам» этой цепи до кислорода за счет его энергии три молекулы АДФ фосфорилируются до трех молекул АТФ.

В результате присоединения к кислороду четырех электронов (е ~), пришедших из цепи переноса, и четырех протонов (Н +) из водной среды молекула кислорода восстанавливается до двух молекул воды: ===0 2 + 4е - + 4Н + → 2Н 2 0

Таким образом происходит полное окисление глюкозы до С0 2 (в цикле Кребса) и Н 2 0 (в цепи переноса электронов), так же как если бы глюкоза сгорала в пламени костра, где ее энергия ушла бы в тепло. Однако при биологическом окислении только часть химической энергии превращается в тепловую. За счет окисления одной молекулы глюкозы образуется 38 молекул АТФ, которые используются в клетках и в организме во всех случаях, когда требуется энергия: для движения, транспорта веществ, синтеза нуклеиновых кислот, белков, углеводов и многого другого (в том числе и для умственной работы, на которую затрачивается много АТФ).

Фосфорилирование АДФ с образованием АТФ сопряжено с окислением и потреблением кислорода. Поэтому процесс этот называют окислительным фосфорилированием.

В клетках окислению подвергаются не только глюкоза, но и другие сахара, а также жиры и некоторые аминокислоты. В большинстве случаев в результате многочисленных ферментных превращений из этих соединений образуются ацетил-КоА или органические кислоты (на рис. 20, А, ПВК и 4), которые поступают в цикл Кребса.

Таким образом, окисление пировиноградной и некоторых других органических кислот ведет к образованию НАД-Н. Богатые энергией электроны НАД-Н поступают в цепь переноса и по пути к конечному акцептору - кислороду отдают свою энергию для синтеза АТФ. Цикл Кребса вместе с цепью переноса электронов выступает в роли энергетического «котла», в котором «сгорают» различные пищевые вещества: в цикле Кребса они передают свою энергию НАД-Н, а в цепи переноса электронов за счет окисления НАД-Н образуется АТФ.

Митохондрии - энергетические станции клетки. Очень кратко о митохондриях было рассказано в § 9. Напомним, что эти органоиды обнаруживаются во всех аэробных эукариотических (т. е. содержащих ядра) клетках: в одноклеточных и многоклеточных организмах животных и растений (как мы уже упоминали в § 11, в отсутствие освещения растения ведут себя как аэробные организмы). Внутренняя мембрана митохондрий образует многочисленные складки - кристы. Между кристами находится вязкая белоксодержащая масса - матрикс. В матриксе расположены все ферменты цикла Кребса, а на внутренней мембране - цепь переноса электронов. В различных типах клеток, на разных этапах развития в каждой клетке может содержаться от нескольких десятков до тысячи митохондрий. Митохондрии имеют собственный генетический аппарат, представленный кольцевыми молекулами ДНК.

Можно считать доказанным, что митохондрии более миллиарда лет тому назад были самостоятельными микроорганизмами. Эти аэробные прокариотические микроорганизмы внедрились в анаэробные эукариотические клетки, и в результате этого возник взаимовыгодный симбиоз. За многие миллионы лет часть бактериальных генов переместилась из митохондриальной в ядерную ДНК, и митохондрии стали зависимыми от клетки-хозяина (как и клетка-хозяин от митохондрий). Митохондриальные рибосомы, транспортные РНК (тРНК) и ряд ферментов митохондрий близки по структуре и свойствам к бактериальным и отличаются от сходных по функциям структур, которые содержатся в цитоплазме клетки-хозяина.

  1. Какова роль ферментативного конвейера цикла Кребса?
  2. В чем суть цикла Кребса?
  3. Что такое окислительное фосфорилирование?
  4. Каков энергетический эффект полного окисления глюкозы?

Процессы анаэробного брожения служили главным источником энергии для всего живого в те времена, когда в атмосфере Земли еще не было кислорода. Его появление открыло принципиально новые возможности получения энергии. Кислород – хороший окислитель, а при окислении органических веществ выделяется в десятки раз больше энергии, чем в ходе брожения. Так, в ходе реакции окисления глюкозы C 6 H 12 O 6 + 6О 2 → 6Н 2 О + 6CО 2 выделяется энергии 686 ккал на моль, тогда как при реакции молочнокислого брожения только 47 ккал на моль.

Естественно, клетки стали использовать открывшиеся возможности. Синтез АТФ в аэробных условиях значительно эффективнее анаэробных синтезов: если при утилизации 1 молекулы глюкозы в процессах брожения образуется 2 молекулы АТФ, то в ходе окислительного фосфорилирования – около 30 (по старым данным – 38). Подробнее мы поговорим об энергетическом балансе на уроке 12.

Окислительным превращениям подвергаются различные органические вещества – промежуточные метаболиты обмена аминокислот, сахаров, жирных кислот и др. Было бы нелогично создавать для каждого из них свой собственный метаболический путь. Гораздо удобнее сначала окислять все эти вещества одним, унифицированным окислителем, а затем уже окислять образовавшуюся восстановленную форму такого «универсального окислителя» кислородом. В качестве этого универсального окислительно-восстановительного промежуточного соединения в клетке используется никотинамидадениндинуклеотид – НАД; мы уже говорили об этом соединении на уроке 10. Как указывалось в 10-м уроке, это вещество может существовать в двух формах: окисленной НАД + и восстановленной НАД∙Н. Для превращения первой формы во вторую необходимо поступление двух электронов и одного иона Н + .

Система играет роль окислительно-восстановительного челнока, переносящего электроны от различных органических веществ к кислороду: на первой стадии НАД + отнимает электроны у органических веществ, окисляя их в конце концов до CО 2 и Н 2 О (разумеется, не в одну стадию, а через многочисленные промежуточные соединения); на второй стадии кислород окисляет НАД∙Н, образовавшийся в ходе первой стадии, и возвращает его вновь в окисленное состояние.

Итак, в самом общем виде совокупность реакций распада различных веществ в аэробных условиях (то есть в присутствии кислорода) можно представить так:

1) органические соединения +
2)

Реакции первого этапа идут или в цитоплазме, или в митохондриях, тогда как реакции второго этапа – только в митохондриях. На этом уроке мы рассмотрим лишь реакции первой группы, реакции второй группы будут изучаться на 12-м уроке.

В клетке имеется еще один кофермент – ФАД (флавинадениндинуклеотид) – который тоже служит окислительно-восстановительным челноком, но используется в меньшем числе реакций, чем НАД; он синтезируется из витамина В 2 – рибофлавина.

Давайте рассмотрим конкретные метаболические пути – окислительные превращения глюкозы и жирных кислот. Аэробный гликолиз начинается с тех же реакций, что и уже рассмотренный нами анаэробный гликолиз (см. урок 10). Однако конечные стадии процесса будут протекать по-другому. При проведения анаэробного гликолиза перед клеткой стояла проблема: куда девать восстановленный НАД∙Н, образующийся в ходе глицеральдегид-3-фосфатдегидрогеназной реакции? Если его не окислять обратно в НАД + , то процесс быстро остановится, поэтому в анаэробном гликолизе последняя реакция – лактатдегидрогеназная – как раз и служила для возвращения этого кофермента в исходную форму. В аэробных условиях такой проблемы нет. Наоборот, в кислородном метаболизме НАД∙Н служит ценнейшим источником энергии – специальная система переносчиков доставляет его из цитозоля в митохондрии, где он окисляется, и за счет этой энергии синтезируется АТФ.

Когда гликолиз протекает в аэробных условиях, пировиноградная кислота не будет восстанавливаться, а будет транспортироваться в митохондрию и окисляться. Сначала она превратится в остаток уксусной кислоты, ацетил, ковалентно присоединенный к особому коферменту – так называемому коэнзиму А.

Эту необратимую реакцию проводит митохондриальный фермент пируватдегидрогеназа, который окисляет пировиноградную кислоту до ацетил-коэнзима А с освобождением углекислоты. Этот фермент содержит несколько коферментов, необходимых для его работы: тиаминпирофосфат (образуется из витамина В 1 – тиамина), липоевую кислоту (она иногда применяется в качестве укрепляющей здоровье пищевой добавки) и ФАД (про него мы уже писали выше). Это очень сложный белок, состоящий из многих субъединиц, его молекулярная масса составляет несколько миллионов дальтон.

Коэнзим А, к которому присоединяется ацетильный остаток, синтезируется из пантотеновой кислоты, также являющейся витамином (витамин В 5). Ацетил-коэнзим А является макроэргом, столь же богатым энергией, сколь и АТФ (см. урок 9).

Пируватдегидрогеназа играет важную роль в регуляции аэробного катаболизма глюкозы. Этот фермент ингибируется НАД∙Н и ацетил-КоА – своими конечными продуктами - по принципу отрицательной обратной связи. Регуляция осуществляется с помощью сложного механизма, включающего и аллостерию, и ковалентную модификацию этого белка. Данный фермент также ингибируется жирными кислотами. Жирные кислоты – более калорийный источник энергии, и кроме того, они менее ценны для проведения синтетических процессов в клетке, поэтому при наличии и глюкозы (ведь пируват образуется из нее), и жирных кислот целесообразно сперва окислять жирные кислоты.

Затем ацетил-коэнзим А будет окисляться до CО 2 и Н 2 О в ходе процесса, называемого циклом Кребса (в честь Г. Кребса, впервые описавшего его в 1937 г.).

Основная роль цикла Кребса в энергетическом обмене клетки состоит в получении восстановленных коферментов НАД∙Н и ФАД∙Н 2 , которые затем будут окисляться кислородом для синтеза АТФ из АДФ и фосфата (этот процесс мы рассмотрим на уроке 12). Восстановление коферментов достигается за счет полного окисления остатка уксусной кислоты до CО 2 и Н 2 О.

Цикл начинается с переноса остатка уксусной кислоты из ацетил-КоА к щавелевоуксусной кислоте (в нейтральной среде это ион оксалоацетата), в результате чего образуется лимонная кислота (точнее, цитрат-ион), а коэнзим А освобождается. Эта реакция катализируется ферментом цитратсинтазой, она необратима.

Участвующие на этом этапе органические кислоты имеют три карбоксильные группы, иногда и весь цикл называют «циклом трикарбоновых кислот», но это название неудачное – уже на следующей стадии одна карбоксильная группа теряется. Поэтому часто цикл называют «циклом трикарбоновых и дикарбоновых кислот».

В обоих случаях выделяется углекислота, окислитель НАД + восстанавливается до НАД∙Н, а укороченный остаток кислоты в ходе реакции присоединяется к коэнзиму А. Только пировиноградная кислота давала двухуглеродный остаток (ацетил-КоА), а вот α-кетоглютаровая дает четырехуглеродный – сукцинил-коэнзим А. α-кетоглютаратдегидрогеназная реакция так же необратима, как и пируватдегидрогеназная, а катализирующий ее фермент содержит те же коферменты.

Продукт реакции сукцинил-коэнзим А, столь же богат энергией, как и ацетил-коэнзим А. Было бы глупо рассеивать эту энергию в тепло, и клетка не допускает такого расточительства. Сукцинил-КоА не просто гидролизуется до янтарной кислоты (точнее, сукцинат-иона) и коэнзима А, в ходе этой реакции происходит синтез ГТФ из ГДФ и фосфата, а ГТФ так же макроэргичен, как АТФ.

Янтарная кислота подвергается дальнейшему окислению. Однако ее окислителем служит не привычный нам НАД + , а другой кофермент – ФАД. Природа использовала именно этот кофермент вовсе не для того, чтобы отравить жизнь студентам и школьникам, изучающим цикл Кребса. Дело в том, что в янтарной кислоте окислению подвергается весьма инертная группа –СН 2 –СН 2 –. Вспомните курс органической химии – алканы в общем-то малореакционноспособны по сравнению со спиртами и альдегидами, окислить их гораздо труднее. Вот и здесь клетка вынуждена использовать более сильный флавиновый окислитель, а не обычный никотинамидный. Янтарная кислота при этом превращается в фумаровую, реакцию ускоряет фермент сукцинатдегидрогеназа.

Последней реакцией цикла является окисление яблочной кислоты до щавелевоуксусной, окислителем служит хорошо знакомый нам НАД + , катализирует реакцию фермент малатдегидрогеназа.

Образовавшиеся НАД∙Н и ФАД∙Н 2 затем окисляются в митохондриях, обеспечивая энергией синтез АТФ. В цикле Кребса образуется также 1 молекула ГТФ, богатого энергией соединения, способного передать фосфатный остаток на АДФ и образовать АТФ. Молекула щавелевоуксусной кислоты выходит из цикла без всяких изменений – она служит как бы катализатором окисления ацетил-коэнзима А, а сама возвращается в исходное состояние в конце каждого оборота цикла. Ферменты цикла Кребса расположены в матриксе митохондрий (кроме сукцинатдегидрогеназы, она находится на внутренней митохондриальной мембране).

В цикле Кребса подвергаются регуляции сразу несколько ферментов. Изоцитратдегидрогеназа ингибируется НАД∙Н – конечным продуктом цикла, и активируется АДФ – веществом, образующимся при энергетических затратах. Важную роль в регуляции цикла играет также обратимость малатдегидрогеназной реакции. При высоких концентрациях НАД∙Н эта реакция протекает справа налево, в сторону образования малата. В результате концентрация оксалоацетата падает, и скорость цитратсинтазной реакции снижается. Образовавшийся малат может использоваться в других метаболических процессах. Цитратсинтаза еще и аллостерически ингибируется АТФ. Регулируется и активность α-кетоглютаратдегидрогеназы.

Цикл Кребса участвует в окислительных превращениях не только глюкозы, но также жирных кислот и аминокислот. После проникновения через наружную мембрану жирные кислоты сперва активируются в цитоплазме путем присоединения коэнзима А, при этом затрачиваются две макроэргические связи АТФ:

R–COOH + HS–KoA + АТФ = R–CO–S–KoA + АМФ + Ф–Ф.

Пирофосфат тут же расщепляется ферментом пирофосфатазой, смещая равновесие реакции вправо.

Ацил-коэнзим А затем переносится в митохондрию.

В этих органеллах действует ферментативная система так называемого β-окисления жирных кислот. Процесс β-окисления протекает поэтапно. На каждом этапе от жирной кислоты отщепляется двухуглеродный фрагмент в виде ацетил-коэнзима А, а также происходит восстановление НАД + до НАД∙Н и ФАД до ФАД∙Н 2 .

В ходе первой реакции происходит окисление группы –СН 2 -СН 2 –, расположенной около карбонильного атома углерода. Как и при окислении сукцината в цикле Кребса, окислителем служит ФАД. Затем (вторая реакция) происходит гидратация двойной связи образовавшегося непредельного соединения, при этом третий атом углерода становится гидроксилированным – образуется β-оксикислота, присоединенная к коэнзиму А. В ходе третьей реакции происходит окисление этой спиртовой группы до кетогруппы, в качестве окислителя используется НАД + . Наконец, с образовавшимся β-кетоацил-коэнзимом А реагирует другая молекула коэнзима А. В результате отщепляется ацетил-коэнзим А, и ацил-КоА укорачивается на два углеродных атома. Теперь циклический процесс будет протекать по второму заходу, остаток жирной кислоты укоротится еще на один ацетил-КоА, и так до полного расщепления жирной кислоты. Из четырех реакций β-окисления только первая является необратимой, остальные – обратимы, их прохождение слева направо обеспечивается постоянным выводом конечных продуктов.

Суммарно β-окисление пальмитоил-коэнзима А протекает согласно уравнению:

Ацетил-КоА затем поступает в цикл Кребса. НАД∙Н и ФАД∙Н 2 окисляются в митохондриях, обеспечивая энергией синтез АТФ.

Катаболизм аминокислот протекает также через цикл Кребса. Различные аминокислоты поступает в цикл различными метаболическими путями, их рассмотрение слишком сложно для данного курса.

Цикл Кребса используется клеткой не только для энергетических нужд, но и для синтеза целого ряда необходимых ей веществ. Он является центральным метаболическим путем и в катаболических, и в анаболических процессах клетки.

Сам Ганс Кребс сперва теоретически предположил, что превращения ди- и трикарбоновых кислот протекают циклически, а затем проделал серию опытов, в которых показал взаимопревращения этих кислот и их способность стимулировать аэробный гликолиз. Однако решительные доказательства протекания этого метаболического пути именно так, а не иначе, были получены с помощью экспериментов с изотопной меткой.

Представьте себе, что вы в определенном промежуточном метаболите цикла Кребса заменили обычный природный изотоп на радиоактивный. Теперь это вещество как бы несет на себе радиоактивную метку, и это позволяет отследить его дальнейшую судьбу. Такое меченое соединение можно добавить к клеточному экстракту и через некоторое время посмотреть, во что оно превратится. Для этого можно отделить небольшие молекулы от макромолекул (например, осаждением последних) и разделить их смесь хроматографическим методом (см. урок 8). Затем останется только определить, в каких веществах содержится радиоактивность. Например, если вы добавите к экстракту радиоактивно меченую лимонную кислоту, то очень скоро метка обнаружится в цис-аконитовой и изолимонной кислоте, а еще через некоторое время – в α-кетоглютаровой. Если же добавить меченую α-кетоглютаровую кислоту, то метка раньше всего перейдет в сукцинил-коэнзим А и янтарную кислоту, потом – в фумаровую. Таким образом, добавляя различные радиоактивно меченые вещества и определяя, куда перешла радиоактивная метка, можно выяснить последовательность реакций на любом этапе метаболическом пути.

Определять радиоактивность можно различными путями. Самый простой способ – по засвечиванию фотографической эмульсии, ведь сама радиоактивность была открыта А. Беккерелем именно благодаря способности радиоактивного излучения засвечивать фотопластинку. Например, если мы разделили смесь веществ тонкослойной хроматографией и знаем, где расположено пятно того или иного вещества, то можно просто приложить к нашей хроматограмме фотопластинку. Тогда участок фотопластинки, соприкасавшийся с пятном, содержащим радиоактивность, окажется засвеченным. Остается только посмотреть, около пятен каких веществ фотоэмульсия засветилась, и сразу же можно сказать, что именно в эти вещества перешла радиоактивная метка.

Этот метод называется радиоавтографией . С его помощью можно изучать не только малые молекулы, но и крупные – например, добавив к живой клетке радиоактивно меченый уридин. Как мы уже говорили на 7-м уроке, уридиновые нуклеотиды входят в состав РНК, так что вскоре эта макромолекула будет радиоактивно помечена. Теперь можно отслеживать местонахождение и транспортировку РНК в клетке. Для этого нужно зафиксировать клетки, чтобы макромолекулы выпали в осадок и не уплыли при дальнейших процедурах, залить их фотоэмульсией и через некоторое время посмотреть в микроскоп, где появились засвеченные участки.

Радиоавтография позволяет непосредственно наблюдать за судьбой молекул в клетке. Однако у метода есть и недостаток – он дает лишь качественную характеристику наличия радиоактивной метки и не позволяет измерить ее количественно. Для точных количественных измерений используется другой способ. β-частицы, вылетающие из радиоактивных изотопов, вызывают свечение особых веществ – сцинтилляторов. Интенсивность этого свечения можно точно измерить с помощью специального прибора – сцинтилляционного счетчика. Точно измерив свечение, мы можем точно определить и количество радиоактивного изотопа. Однако использование сцинтилляционного счетчика позволяет измерить лишь общее количество радиоактивного изотопа в пробе. Если мы зальем раствором сцинтиллятора клеточную суспензию, то сможем определить суммарное количество радиоактивного соединения, но не его распределение по органеллам. Для этого нам придется выделять отдельные клеточные органеллы и измерять радиоактивность в них.

Обычно в биохимических исследованиях применяют такие изотопы как тритий 3 Н, углерод 14 С, фосфор 32 Р и серу 35 S.




У эукариот все реакции цикла Кребса протекают внутри митохондрий, причём катализирующие их ферменты, кроме одного, находятся в свободном состоянии в митохондриальном матриксе. У прокариот реакции цикла протекают в цитоплазме. При работе цикла Кребса окисляются различные продукты обмена, в частности токсичные недоокисленные продукты распада алкоголя, поэтому стимуляцию цикла Кребса можно рассматривать как меру биохимической детоксикации.



СубстратыПродуктыФерментТип реакцииКомментарий 1 Оксалоацета т + Ацетил-CoA + H 2 O Цитрат + CoA-SH Цитратсинта за Альдольная конденсация лимитирующая стадия, превращает C 4 оксалоацетат в С 6 2Цитрат цис-аконитат + H 2 O аконитаза 3 цис-акониат + H 2 O изоцитрат гидратация изоцитратдеги дрогеназа декарбоксилир ующая Окисление 4 Изоцитрат + NAD + Оксалосукцин ат + NADH + H + 5 Оксалосукци нат α- кетоглутарат + CO 2 декарбокси лирование необратимая стадия, образуется C 5


СубстратыПродуктыФермент Тип реакции Комментарий 6 α- кетоглутар ат + NAD + + CoA-SH сукцинил- CoA + NADH + H + + CO 2 альфакетоглу таратдегидро геназный комплекс (3 фермента) Окислитель ное декарбокси лирование образуется NADH (эквивалентно 2.5 АТФ), регенерация C 4 цепи (освобождается CoA-SH) 7 сукцинил- CoA + GDP + P i сукцинат + CoA-SH + GTP сукцинилкоф ермент А синтетаза субстратно е фосфорили рование АДФ->ATP, образуется 1 ATP (или 1 GTF) 8 сукцинат + убихинон (Q) фумарат + убихинол (QH 2) сукцинатдеги дрогеназа Окисление используется FAD как простетическая группа (FAD->FADH 2 на первой стадии реакции) в ферменте, образуется эквивалент 1.5 ATP ATP, образуется 1 ATP (или 1 GTF) 8 сукцинат + убихинон (Q) фумарат + убихинол (QH 2) сукцинатдеги дрогеназа Окисление используется FAD как простетическая группа (FAD->FADH 2 на первой стадии реакции) в ферменте, образуется эквивалент 1.5 ATP">


СубстратыПродуктыФермент Тип реакции Комментарий 9 фумарат + H 2 O L-малатфумараза H 2 O- присоедин ение 10 L-малат + NAD + оксалоаце тат + NADH + H + малатдегидро геназа окисление образуется NADH (эквивалентно 2.5 ATP) Общее уравнение одного оборота цикла Кребса: Ацетил-КоААцетил-КоА 2CO 2 + КоА + 8e КоАe



Цикл Кребса регулируется «по механизму отрицательной обратной связи», при наличии большого количества субстратов, цикл активно работает, а при избытке продуктов реакции тормозится. Регуляция осуществляется и при помощи гормонов. Такими гормонами являются: инсулин и адреналин. Глюкагон стимулирует синтез глюкозы и ингибирует реакции цикла Кребса. Как правило работа цикла Кребса не прерывается за счёт анаплеротических реакций, которые пополняют цикл субстратами: Пируват + СО 2 + АТФ = Оксалацетат(субстрат Цикла Кребса) + АДФ + Фн.


1.Интегративная функция цикл является связующим звеном между реакциями анаболизма и катаболизма. 2.Катаболическая функция превращение различных веществ в субстраты цикла: Жирные кислоты, пируват,Лей,Фен Ацетил- КоА. Арг, Гис, Глу α-кетоглутарат. Фен, тир фумарат. 3.Анаболическая функция использование субстратов цикла на синтез органических веществ: Оксалацетат глюкоза, Асп, Асн. Сукцинил-КоА синтез гема. CО 2 реакции карбоксилирования.


1.Водорододонорная функция цикл Кребса поставляет на дыхательную цепь митохондрий протоны в виде трех НАДН.Н + и одного ФАДН 2. 2.Энергетическая функция 3 НАДН.Н + дает 7.5 моль АТФ, 1 ФАДН 2 дает 1.5 моль АТФ на дыхательной цепи. Кроме того в цикле путем субстратного фосфорилировани синтезируется 1 ГТФ, а затем из него синтезируется АТФ посредствам трансфосфорилировани: ГТФ + АДФ = АТФ + ГДФ.


Для более легкого запоминания кислот, участвующих в цикле Кребса, существует мнемоническое правило: Целый Ананас И Кусочек Суфле Сегодня Фактически Мой Обед, что соответствует ряду цитрат, (цис-)аконитат, изоцитрат, (альфа-)кетоглутарат, сукцинил-CoA, сукцинат, фумарат, малат, оксалоацетат.


Существует также следующее мнемоническое стихотворение: Щуку ацетил лимонил, А нарцисса конь боялся, Он над ним изолимонно Альфа-кето-глютарался. Сукцинился коэнзимом, Янтарился фумарово, Яблочек припас на зиму, В щуку обратился снова. (щавелевоуксусная кислота, лимонная кислота, цис- аконитовая кислота, изолимонная кислота, α- кетоглутаровая кислота, сукцинил-CoA, янтарная кислота, фумаровая кислота, яблочная кислота, щавелевоуксусная кислота).

ЦИКЛ ТРИКАРБОНОВЫХ КИСЛОТ (ЦИКЛ КРЕБСА)

Цикл трикарбоновых кислот впервые был открыт английским биохимиком Г. Кребсом. Он первым постулировал значение данного цикла для полного сгорания пирувата, главным источником которого является гликолитическое превращение углеводов . В дальнейшем было показано, что цикл трикарбо-новых кислот является тем центром, в котором сходятся практически все метаболические пути. Таким образом, цикл Кребса – общий конечный путь окисления ацетильных групп (в виде ацетил-КоА), в которые превращается в процессе катаболизма большая часть органических молекул , играющих роль «клеточного топлива »: углеводов , жирных кислот и аминокислот .

Образовавшийся в результате окислительного декарбоксилирования пирувата в митохондриях ацетил-КоА вступает в цикл Кребса . Данный цикл происходит в матриксе митохондрий и состоит из восьми последовательных реакций (рис. 10.9). Начинается цикл с присоединения ацетил-КоА к оксалоацетату и образования лимонной кислоты (цитрата ). Затем лимонная кислота (шестиуглеродное соединение) путем ряда дегидрирований (отнятие водорода ) и двух декарбоксилирований (отщепление СО 2) теряет два углеродных атома и снова в цикле Кребса превращается в оксалоацетат (четырехуглеродное соединение), т.е. в результате полного оборота цикла одна молекула ацетил-КоА сгорает до СО 2 и Н 2 О, а молекула окса-лоацетата регенерируется. Рассмотрим все восемь последовательных реакций (этапов) цикла Кребса .

Рис. 10.9. Цикл трикарбоновых кислот (цикл Кребса ).

Первая реакция катализируется ферментом цит-рат-синтазой, при этом ацетильная группа ацетил-КоА конденсируется с оксалоацетатом, в результате чего образуется лимонная кислота :

По-видимому, в данной реакции в качестве промежуточного продукта образуется связанный с ферментом цитрил-КоА. Затем последний самопроизвольно и необратимо гидролизуется с образованием цитрата и HS-KoA.

В результате второй реакции образовавшаяся лимонная кислота подвергается дегидратированию с образованием цис-аконитовой кислоты , которая, присоединяя молекулу воды , переходит в изолимонную кислоту (изоцитрат). Катализирует эти обратимые реакции гидратации–дегидратации фермент аконитатгидратаза (аконитаза). В результате происходит взаимоперемещение Н и ОН в молекуле цитрата :

Третья реакция , по-видимому, лимитирует скорость цикла Кребса . Изолимонная кислота дегидрируется в присутствии НАД-зависимой изо-цитратдегидрогеназы.

В ходе изоцитратдегидрогеназной реакции изолимонная кислота одновременно декарбоксилируется. НАД-зависимая изоцитратдегидрогеназа является аллостерическим ферментом , которому в качестве специфического активатора необходим АДФ . Кроме того, фермент для проявления своей активности нуждается в ионах Mg 2+ или Мn 2+ .

Во время четвертой реакции происходит окислительное декарбокси-лирование α-кетоглутаровой кислоты с образованием высокоэнергетического соединения сукцинил-КоА. Механизм этой реакции сходен с таковым реакции окислительного декарбоксилирования пирувата до ацетил-КоА, α-кетоглутаратдегидрогеназный комплекс напоминает по своей структуре пируватдегидрогеназный комплекс. Как в одном, так и в другом случае в реакции принимают участие 5 коферментов : ТПФ, амид липоевой кислоты , HS-KoA, ФАД и НАД + .

Пятая реакция катализируется ферментом сукцинил-КоА-синтета-зой. В ходе этой реакции сукцинил-КоА при участии ГТФ и неорганического фосфата превращается в янтарную кислоту (сукцинат ). Одновременно происходит образование высокоэргической фосфатной связи ГТФ за счет высокоэргической тиоэфирной связи сукцинил-КоА:

В результате шестой реакции сукцинат дегидрируется в фумаровую кислоту . Окисление сукцината катализируется сукцинатдегидрогеназой , в молекуле которой с белком прочно (ковалентно) связан кофермент ФАД. В свою очередь сукцинатдегидрогеназа прочно связана с внутренней ми-тохондриальной мембраной :

Седьмая реакция осуществляется под влиянием фермента фума-ратгидратазы (фумаразы ). Образовавшаяся при этом фумаровая кислота гидратируется, продуктом реакции является яблочная кислота (малат). Следует отметить, что фумаратгидратаза обладает стереоспецифичностью (см. главу 4) – в ходе реакции образуется L-яблочная кислота :

Наконец, в ходе восьмой реакции цикла трикарбоновых кислот под влиянием митохондриальной НАД-зависимой малатдегидрогеназы происходит окисление L-малата в оксалоацетат:

Как видно, за один оборот цикла, состоящего из восьми ферментативных реакций , происходит полное окисление («сгорание») одной молекулы ацетил-КоА. Для непрерывной работы цикла необходимо постоянное поступление в систему ацетил-КоА, а коферменты (НАД + и ФАД), перешедшие в восстановленное состояние, должны снова и снова окисляться. Это окисление осуществляется в системе переносчиков электронов в дыхательной цепи цепи дыхательных ферментов ), локализованной в мембране митохондрий . Образовавшийся ФАДН 2 прочно связан с СДГ, поэтому он передает атомы водорода через KoQ. Освобождающаяся в результате окисления ацетил-КоА энергия в значительной мере сосредоточивается в макроэргических фосфатных связях АТФ . Из 4 пар атомов водорода 3 пары переносят НАДН на систему транспорта электронов ; при этом в расчете на каждую пару в системе биологического окисления образуется 3 молекулы АТФ (в процессе сопряженного ), а всего, следовательно, 9 молекул АТФ (см. главу 9). Одна пара атомов от сукцинатдегидрогеназы-ФАДН 2 попадает в систему транспорта электронов через KoQ, в результате образуется только 2 молекулы АТФ . В ходе цикла Кребса синтезируется также одна молекула ГТФ (субстратное фосфорилирование ), что равносильно одной молекуле АТФ . Итак, при окислении одной молекулы ацетил-КоА в цикле Кребса и системе окислительного фосфорилирования может образоваться 12 молекул АТФ .

Если подсчитать полный энергетический эффект гликолитического расщепления глюкозы и последующего окисления двух образовавшихся молекул пирувата до СО 2 и Н 2 О, то он окажется значительно большим.

Как отмечалось, одна молекула НАДН (3 молекулы АТФ ) образуется при окислительном декарбоксилировании пирувата в ацетил-КоА. При расщеплении одной молекулы глюкозы образуется 2 молекулы пирувата, а при окислении их до 2 молекул ацетил-КоА и последующих 2 оборотов цикла трикарбоновых кислот синтезируется 30 молекул АТФ (следовательно, окисление молекулы пирувата до СО 2 и Н 2 О дает 15 молекул АТФ ). К этому количеству надо добавить 2 молекулы АТФ , образующиеся при аэробном гликолизе , и 6 молекул АТФ , синтезирующихся за счет окисления 2 молекул внемитохондриального НАДН, которые образуются при окислении 2 молекул глицеральдегид-3-фосфата в дегидрогеназной реакции гликолиза . Следовательно, при расщеплении в тканях одной молекулы глюкозы по уравнению С 6 Н 12 О 6 + 6О 2 -> 6СО 2 + 6Н 2 О синтезируется 38 молекул АТФ . Несомненно, что в энергетическом отношении полное расщепление глюкозы является более эффективным процессом, чем анаэробный гликолиз .

Необходимо отметить, что образовавшиеся в процессе превращения глицеральдегид-3-фосфата 2 молекулы НАДН в дальнейшем при окислении могут давать не 6 молекул АТФ , а только 4. Дело в том, что сами молекулы внемитохондриального НАДН не способны проникать через мембрану внутрь митохондрий . Однако отдаваемые ими электроны могут включаться в митохондриальную цепь биологического окисления с помощью так называемого глицеролфосфатного челночного механизма (рис. 10.10). Ци-топлазматический НАДН сначала реагирует с цитоплазматическим ди-гидроксиацетонфосфатом, образуя глицерол-3-фосфат. Реакция катализи-

Рис. 10.10. Глицеролфосфатный челночный механизм. Объяснение в тексте.

руется НАД-зависимой цитоплазматической глицерол-3-фосфат-дегидроге-назой:

Дигидроксиацетонфосфат + НАДН + Н + <=> Глицерол-3-фосфат + НАД + .

Образовавшийся глицерол-3-фосфат легко проникает через митохонд-риальную мембрану . Внутри митохондрии другая (митохондриальная) глицерол-3-фосфат-дегидрогеназа (флавиновый фермент ) снова окисляет глицерол-3-фосфат до диоксиацетонфосфата:

Глицерол-3-фосфат + ФАД <=> Диоксиацетонфосфат + ФАДН 2 .

Восстановленный флавопротеин (фермент-ФАДН 2) вводит на уровне KoQ приобретенные им электроны в цепь биологического окисления и сопряженного с ним окислительного фосфорилирования , а диоксиаце-тонфосфат выходит из митохондрий в цитоплазму и может вновь взаимодействовать с цитоплазматическим НАДН + Н + . Таким образом, пара электронов (из одной молекулы цитоплазматического НАДН + Н +), вводимая в дыхательную цепь с помощью глицеролфосфатного челночного механизма, дает не 3, а 2 АТФ .

Рис. 10.11. Малат-аспартатная челночная система для переноса восстанавливающих эквивалентов от цитозольного НАДН в митохондриальный матрикс. Объяснение в тексте.

В дальнейшем было показано, что с помощью данного челночного механизма лишь в скелетных мышцах и мозге осуществляется перенос восстановленных эквивалентов от цитозольного НАДН + Н + в митохондрии .

В клетках печени , почек и сердца действует более сложная малат-ас-партатная челночная система. Действие такого челночного механизма становится возможным благодаря присутствию малатдегидрогеназы и ас-партатаминотрансферазы как в цитозоле, так и в митохондриях .

Установлено, что от цитозольного НАДН + Н + восстановленные эквиваленты сначала при участии фермента малатдегидрогеназы (рис. 10.11) переносятся на цитозольный оксалоацетат. В результате образуется малат, который с помощью системы, транспортирующей дикарбоновые кислоты , проходит через внутреннюю мембрану митохондрии в матрикс. Здесь малат окисляется в оксалоацетат, а матриксный НАД + восстанавливается в НАДН + Н + , который может теперь передавать свои электроны в цепь дыхательных ферментов , локализованную на внутренней мембране митохондрии . В свою очередь образовавшийся оксалоацетат в присутствии глутамата и фермента АсАТ вступает в реакцию трансаминирования . Образующиеся аспарат и α-кетоглутарат с помощью специальных транспортных систем способны проходить через мембрану митохондрий .

Транспортирование в цитозоле регенерирует оксалоацетат, что вызывает к действию следующий цикл. В целом процесс включает легкообратимые реакции , происходит без потребления энергии, «движущей силой» его является постоянное восстановление НАД + в цитозоле гли-церальдегид-3-фосфатом, образующимся при катаболизме глюкозы .

Итак, если функционирует малат-аспартатный механизм, то в результате полного окисления одной молекулы глюкозы может образоваться не 36, а 38 молекул АТФ (табл. 10.1).

В табл. 10.1 приведены реакции , в которых происходит образование высокоэргических фосфатных связей в ходе катаболизма глюкозы , с указанием эффективности процесса в аэробных и анаэробных условиях

Министерство образования Российской федерации

Самарский Государственный технический университет

Кафедра «Органической химии»

Реферат на тему:

«ЦИКЛ ТРИКАРБОНОВЫХ КИСЛОТ (ЦИКЛ КРЕБСА)»

Выполнил студент: III – НТФ – 11

Ерошкина Н.В.

Проверил.