Элементарный заряд минимальное значение. Минимальный инициирующий заряд ивв

Элементарный электрический заряд - фундаментальная физическая постоянная, минимальная порция (квант) электрического заряда. Равен приблизительно

e=1,602 176 565 (35)·10 ?19 Кл

в Международной системе единиц (СИ). Тесно связан с постоянной тонкой структуры, описывающей электромагнитное взаимодействие.

«Любой наблюдаемый в эксперименте электрический заряд всегда кратен элементарному» - такое предположение было высказано Б. Франклином в 1752 году и в дальнейшем неоднократно проверялось экспериментально. Впервые элементарный заряд был экспериментально измерен Милликеном в 1910 году.

Тот факт, что электрический заряд встречается в природе лишь в виде целого числа элементарных зарядов, можно назвать квантованием электрического заряда. При этом в классической электродинамике вопрос о причинах квантования заряда не обсуждается, поскольку заряд является внешним параметром, а не динамической переменной. Удовлетворительного объяснения, почему заряд обязан квантоваться, пока не найдено, однако уже получен ряд интересных наблюдений.

  • · Если в природе существует магнитный монополь, то, согласно квантовой механике, его магнитный заряд обязан находиться в определённом соотношении с зарядом любой выбранной элементарной частицы. Отсюда автоматически следует, что одно только существование магнитного монополя влечёт за собой квантование заряда. Однако обнаружить в природе магнитный монополь не удалось.
  • · В современной физике элементарных частиц разрабатываются и другие модели, в которых все известные фундаментальные частицы оказывались бы простыми комбинациями новых, ещё более фундаментальных частиц. В этом случае квантование заряда наблюдаемых частиц не представляется удивительным, поскольку оно возникает «по построению».

Не исключено также, что все параметры наблюдающихся частиц будут описаны в рамках единой теории поля, подходы к которой разрабатываются в настоящее время. В таких теориях величина электрического заряда частиц должна вычисляться из крайне небольшого числа фундаментальных параметров, возможно, связанных со структурой пространства-времени на сверхмалых расстояниях. Если такая теория будет построена, тогда то, что мы наблюдаем как элементарный электрический заряд, окажется некоторым дискретным инвариантом пространства-времени. Такой подход развивается, например, в модели С. Бильсона-Томпсона, в которой фермионы стандартной модели интерпретируются, как три ленты пространства-времени, заплетённые в косу, а электрический заряд (точнее, треть от него) соответствует перекрученной на 180° ленте. Однако несмотря на изящество таких моделей, конкретных общепринятых результатов в этом направлении пока не получено.

Законы электролиза, открытые Фарадеем, свидетельствуют в пользу существования мельчайших, неделимых количеств электричества. При электролизе один моль любого - валентного элемента переносит заряд кулонов ( - постоянная Фарадея). На один атом (точнее, ион) приходится, таким образом, заряд

На одновалентный ион приходится заряд , на двухвалентный - заряд , на трехвалентный - заряд и т. д.

Эту закономерность легко понять, если принять, что заряд является мельчайшей порцией заряда, элементарным зарядом.

Но законы электролиза можно понимать и в том смысле, что является средней порцией заряда, переносимой одновалентным ионом; свойство - валентного иона переносить в раз больший заряд должно было бы объясняться тогда не атомарной структурой электричества, а только свойствами иона. Поэтому для выяснения вопроса о существовании элементарного заряда необходимы прямые опыты по измерению мельчайших количеств электричества. Такие опыты были выполнены американским физиком Робертом Милликеном (1868-1953) в 1909 г.

Установка Милликена изображена схематически на рис. 348. Основной ее частью является плоский конденсатор 2,3, на пластины которого с помощью переключателя 4 можно подавать разность потенциалов того или иного знака.

Рис. 348. Схема опыта по измерению элементарного электрического заряда. Рентгеновская трубка 7 служит для изменения заряда капель; ее излучение создает в объеме между пластинами 2 и 3 ионы, которые, прилипая к капле, изменяют ее заряд

В сосуд 1 с помощью пульверизатора вбрызгиваются мельчайшие капли масла или другой жидкости. Некоторые из этих капель через отверстие в верхней пластине попадают в пространство между пластинами конденсатора, освещаемое лампой 6. Капли наблюдаются в микроскоп через окошко 5; они выглядят яркими звездочками на темном фоне.

Когда между пластинами конденсатора нет электрического поля, капли падают вниз с постоянной скоростью. При включении поля незаряженные капли продолжают опускаться с неизменной скоростью. Но многие капли при разбрызгивании приобретают заряд (электризация трением). На такие заряженные капли действует, кроме силы тяжести, также сила электрического поля. В зависимости от знака заряда можно выбрать направление поля так, чтобы электрическая сила была направлена навстречу силе тяжести. В таком случае заряженная капелька после включения поля будет падать с меньшей скоростью, чем в отсутствие поля. Можно подобрать значение напряженности поля так, что электрическая сила превзойдет силу тяжести и капля будет двигаться вверх.

В установке Милликена можно наблюдать за одной и той же каплей в течение нескольких часов; для этого достаточно выключать (или уменьшать) поле, как только капля начнет приближаться к верхней пластине конденсатора, и включать (или увеличивать) его снова, когда она будет опускаться к нижней пластине.

Равномерность движения капли свидетельствует о том, что действующая на нее сила уравновешивается сопротивлением воздуха, которое пропорционально скорости капли. Поэтому для такой капли можно написать равенство

где - сила тяжести, действующая на каплю с массой , - скорость капли, - сила сопротивления воздуха (сила трения), - коэффициент, зависящий от вязкости воздуха и размеров капли.

Измерив с помощью микроскопа диаметр капли, следовательно, зная ее массу, и определив далее скорость свободного равномерного падения , мы можем найти из (196.1) значение коэффициента , которое для данной капли сохраняется неизменным. Условие равномерного движения для капли с зарядом , поднимающейся со скоростью в электрическом поле , имеет вид

(196.2)

Из (196.2) получаем

Таким образом, проделав с одной и той же каплей измерения в отсутствие поля и при его наличии, найдем заряд капли . Мы можем изменить этот заряд. Для этой цели служит рентгеновская трубка 7 (рис, 348), с помощью которой можно ионизовать воздух в конденсаторе. Образовавшиеся ионы будут захватываться капелькой, и заряд ее изменится, сделавшись равным . При этом изменится скорость равномерного движения капли и она станет равной , так что

Этот минимальный заряд равен, как мы видим, элементарному заряду, проявляющемуся в процессе электролиза. Важно отметить, что начальный заряд капли есть «электричество трения», изменения же этого заряда происходили за счет захвата каплей ионов газа, образованных рентгеновскими лучами. Таким образом, заряд, образующийся при трении, заряды ионов газа и ионов электролита слагаются из одинаковых элементарных зарядов. Данные других опытов позволяют обобщить этот вывод: все встречающиеся в природе положительные и отрицательные заряды состоят из целого числа элементарных зарядов .

В частности, заряд электрона равен по абсолютному значению одному элементарному заряду.

Темы кодификатора ЕГЭ : электризация тел, взаимодействие зарядов, два вида заряда, закон сохранения электрического заряда.

Электромагнитные взаимодействия принадлежат к числу наиболее фундаментальных взаимодействий в природе. Силы упругости и трения, давление газа и многое другое можно свести к электромагнитным силам между частицами вещества. Сами электромагнитные взаимодействия уже не сводятся к другим, более глубоким видам взаимодействий.

Столь же фундаментальным типом взаимодействия является тяготение - гравитационное притяжение любых двух тел. Однако между электромагнитными и гравитационными взаимодействиями имеется несколько важных отличий.

1. Участвовать в электромагнитных взаимодействиях могут не любые, а только заряженные тела (имеющие электрический заряд ).

2. Гравитационное взаимодействие - это всегда притяжение одного тела к другому. Электромагнитные взаимодействия могут быть как притяжением, так и отталкиванием.

3. Электромагнитное взаимодействие гораздо интенсивнее гравитационного. Например, сила электрического отталкивания двух электронов в раз превышает силу их гравитационного притяжения друг к другу.

Каждое заряженное тело обладает некоторой величиной электрического заряда . Электрический заряд - это физическая величина, определяющая силу электромагнитного взаимодействия между объектами природы . Единицей измерения заряда является кулон (Кл).

Два вида заряда

Поскольку гравитационное взаимодействие всегда является притяжением, массы всех тел неотрицательны. Но для зарядов это не так. Два вида электромагнитного взаимодействия - притяжение и отталкивание - удобно описывать, вводя два вида электрических зарядов: положительные и отрицательные .

Заряды разных знаков притягиваются друг к другу, а заряды разных знаков друг от друга отталкиваются. Это проиллюстрировано на рис. 1 ; подвешенным на нитях шарикам сообщены заряды того или иного знака.

Рис. 1. Взаимодействие двух видов зарядов

Повсеместное проявление электромагнитных сил объясняется тем, что в атомах любого вещества присутствуют заряженные частицы: в состав ядра атома входят положительно заряженные протоны, а по орбитам вокруг ядра движутся отрицательно заряженные электроны.

Заряды протона и электрона равны по модулю, а число протонов в ядре равно числу электронов на орбитах, и поэтому оказывается, что атом в целом электрически нейтрален. Вот почему в обычных условиях мы не замечаем электромагнитного воздействия со стороны окружающих тел: суммарный заряд каждого из них равен нулю, а заряженные частицы равномерно распределены по объёму тела. Но при нарушении электронейтральности (например, в результате электризации ) тело немедленно начинает действовать на окружающие заряженные частицы.

Почему существует именно два вида электрических зарядов, а не какое-то другое их число, в данный момент не известно. Мы можем лишь утверждать, что принятие этого факта в качестве первичного даёт адекватное описание электромагнитных взаимодействий.

Заряд протона равен Кл. Заряд электрона противоположен ему по знаку и равен Кл. Величина

называется элементарным зарядом . Это минимальный возможный заряд: свободные частицы с меньшей величиной заряда в экспериментах не обнаружены. Физика не может пока объяснить, почему в природе имеется наименьший заряд и почему его величина именно такова.

Заряд любого тела всегда складывается из целого количества элементарных зарядов:

Если , то тело имеет избыточное количество электронов (по сравнению с количеством протонов). Если же , то наоборот, у тела электронов недостаёт: протонов на больше.

Электризация тел

Чтобы макроскопическое тело оказывало электрическое влияние на другие тела, его нужно электризовать. Электризация - это нарушение электрической нейтральности тела или его частей. В результате электризации тело становится способным к электромагнитным взаимодействиям.

Один из способов электризовать тело - сообщить ему электрический заряд, то есть добиться избытка в данном теле зарядов одного знака. Это несложно сделать с помощью трения.

Так, при натирании шёлком стеклянной палочки часть её отрицательных зарядов уходит на шёлк. В результате палочка заряжается положительно, а шёлк - отрицательно. А вот при натирании шерстью эбонитовой палочки часть отрицательных зарядов переходит с шерсти на палочку: палочка заряжается отрицательно, а шерсть - положительно.

Данный способ электризации тел называется электризацией трением . С электризацией трением вы сталкиваетесь всякий раз, когда снимаете свитер через голову;-)

Другой тип электризации называется электростатической индукцией , или электризацией через влияние . В этом случае суммарный заряд тела остаётся равным нулю, но перераспределяется так, что в одних участках тела скапливаются положительные заряды, в других - отрицательные.

Рис. 2. Электростатическая индукция

Давайте посмотрим на рис. 2 . На некотором расстоянии от металлического тела находится положительный заряд . Он притягивает к себе отрицательные заряды металла (свободные электроны), которые скапливаются на ближайших к заряду участках поверхности тела. На дальних участках остаются нескомпенсированные положительные заряды.

Несмотря на то, что суммарный заряд металлического тела остался равным нулю, в теле произошло пространственное разделение зарядов. Если сейчас разделить тело вдоль пунктирной линии, то правая половина окажется заряженной отрицательно, а левая - положительно.

Наблюдать электризацию тела можно с помощью электроскопа. Простой электроскоп показан на рис. 3 (изображение с сайта en.wikipedia.org).

Рис. 3. Электроскоп

Что происходит в данном случае? Положительно заряженная палочка (например, предварительно натёртая) подносится к диску электроскопа и собирает на нём отрицательный заряд. Внизу, на подвижных листочках электроскопа, остаются нескомпенсированные положительные заряды; отталкиваясь друг от друга, листочки расходятся в разные стороны. Если убрать палочку, то заряды вернутся на место и листочки опадут обратно.

Явление электростатической индукции в грандиозных масштабах наблюдается во время грозы. На рис. 4 мы видим идущую над землёй грозовую тучу.

Рис. 4. Электризация земли грозовой тучей

Внутри тучи имеются льдинки разных размеров, которые перемешиваются восходящими потоками воздуха, сталкиваются друг с другом и электризуются. При этом оказывается, что в нижней части тучи скапливается отрицательный заряд, а в верхней - положительный.

Отрицательно заряженная нижняя часть тучи наводит под собой на поверхности земли заряды положительного знака. Возникает гигантский конденсатор с колоссальным напряжением между тучей и землёй. Если этого напряжения будет достаточно для пробоя воздушного промежутка, то произойдёт разряд - хорошо известная вам молния.

Закон сохранения заряда

Вернёмся к примеру электризации трением - натирании палочки тканью. В этом случае палочка и кусок ткани приобретают равные по модулю и противоположные по знаку заряды. Их суммарный заряд как был равен нулю до взаимодействия, так и остаётся равным нулю после взаимодействия.

Мы видим здесь закон сохранения заряда , который гласит: в замкнутой системе тел алгебраическая сумма зарядов остаётся неизменной при любых процессах, происходящих с этими телами :

Замкнутость системы тел означает, что эти тела могут обмениваться зарядами только между собой, но не с какими-либо другими объектами, внешними по отношению к данной системе.

При электризации палочки ничего удивительного в сохранении заряда нет: сколько заряженных частиц ушло с палочки - столько же пришло на кусок ткани (или наоборот). Удивительно то, что в более сложных процессах, сопровождающихся взаимными превращениями элементарных частиц и изменением числа заряженных частиц в системе, суммарный заряд всё равно сохраняется!

Например, на рис. 5 показан процесс , при котором порция электромагнитного излучения (так называемый фотон ) превращается в две заряженные частицы - электрон и позитрон . Такой процесс оказывается возможным при некоторых условиях - например, в электрическом поле атомного ядра.

Рис. 5. Рождение пары электрон–позитрон

Заряд позитрона равен по модулю заряду электрона и противоположен ему по знаку. Закон сохранения заряда выполнен! Действительно, в начале процесса у нас был фотон, заряд которого равен нулю, а в конце мы получили две частицы с нулевым суммарным зарядом.

Закон сохранения заряда (наряду с существованием наименьшего элементарного заряда) является на сегодняшний день первичным научным фактом. Объяснить, почему природа ведёт себя именно так, а не иначе, физикам пока не удаётся. Мы можем лишь констатировать, что эти факты подтверждаются многочисленными физическими экспериментами.

Подобно понятию гравитационной массы тела в механике Ньютона, понятие заряда в электродинамике является первичным, основным понятием.

Электрический заряд - это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Электрический заряд обычно обозначается буквами q или Q .

Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:

Существует два рода электрических зарядов, условно названных положительными и отрицательными.

Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

Одноименные заряды отталкиваются, разноименные - притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.

Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда .

В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

q 1 + q 2 + q 3 + ... +q n = const.

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.

С современной точки зрения, носителями зарядов являются элементарные частицы. Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны, отрицательно заряженные электроны и нейтральные частицы - нейтроны. Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному заряду e .

В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером . Атом данного вещества может потерять один или несколько электронов или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион.

Заряд может передаваться от одного тела к другому только порциями, содержащими целое число элементарных зарядов. Таким образом, электрический заряд тела - дискретная величина:

Физические величины, которые могут принимать только дискретный ряд значений, называются квантованными . Элементарный заряд e является квантом (наименьшей порцией) электрического заряда. Следует отметить, что в современной физике элементарных частиц предполагается существование так называемых кварков - частиц с дробным зарядом и Однако, в свободном состоянии кварки до сих пор наблюдать не удалось.

В обычных лабораторных опытах для обнаружения и измерения электрических зарядов используется электрометр ( или электроскоп) - прибор, состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси (рис. 1.1.1). Стержень со стрелкой изолирован от металлического корпуса. При соприкосновении заряженного тела со стержнем электрометра, электрические заряды одного знака распределяются по стержню и стрелке. Силы электрического отталкивания вызывают поворот стрелки на некоторый угол, по которому можно судить о заряде, переданном стержню электрометра.

Электрометр является достаточно грубым прибором; он не позволяет исследовать силы взаимодействия зарядов. Впервые закон взаимодействия неподвижных зарядов был открыт французским физиком Шарлем Кулоном в 1785 г. В своих опытах Кулон измерял силы притяжения и отталкивания заряженных шариков с помощью сконструированного им прибора - крутильных весов (рис. 1.1.2), отличавшихся чрезвычайно высокой чувствительностью. Так, например, коромысло весов поворачивалось на 1° под действием силы порядка 10 -9 Н.

Идея измерений основывалась на блестящей догадке Кулона о том, что если заряженный шарик привести в контакт с точно таким же незаряженным, то заряд первого разделится между ними поровну. Таким образом, был указан способ изменять заряд шарика в два, три и т. д. раз. В опытах Кулона измерялось взаимодействие между шариками, размеры которых много меньше расстояния между ними. Такие заряженные тела принято называть точечными зарядами .

Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь.

На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

Силы взаимодействия подчиняются третьему закону Ньютона:

Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках (рис. 1.1.3). Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой .

Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.

Коэффициент пропорциональности k в законе Кулона зависит от выбора системы единиц. В Международной системе СИ за единицу заряда принят кулон (Кл).

Кулон - это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А. Единица силы тока (Ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения .

Коэффициент k в системе СИ обычно записывают в виде:

Где - электрическая постоянная .

В системе СИ элементарный заряд e равен:

Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции:

Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Рис. 1.1.4 поясняет принцип суперпозиции на примере электростатического взаимодействия трех заряженных тел.

Принцип суперпозиции является фундаментальным законом природы. Однако, его применение требует определенной осторожности, в том случае, когда речь идет о взаимодействии заряженных тел конечных размеров (например, двух проводящих заряженных шаров 1 и 2). Если к системе из двух заряженных шаров поднсти третий заряженный шар, то взаимодействие между 1 и 2 изменится из-за перераспределения зарядов .

Принцип суперпозиции утверждает, что при заданном (фиксированном) распределении зарядов на всех телах силы электростатического взаимодействия между любыми двумя телами не зависят от наличия других заряженных тел.

Элементарный электрический заряд элемента́рный электри́ческий заря́д

(е ), минимальный электрический заряд, положительный или отрицательный, величина которого е ≈4,8·10 -10 единиц СГСЭ, или 1,6·10 -19 Кл. Почти все заряженные элементарные частицы имеют заряд +е или -е (исключение - некоторые резонансы с зарядом, кратным е ); частицы с дробными электрическими зарядами не наблюдались, однако в современной теории сильного взаимодействия - квантовой хромодинамике - предполагается существование кварков - частиц с зарядами, кратными 1 / 3 е .

ЭЛЕМЕНТАРНЫЙ ЭЛЕКТРИЧЕСКИЙ ЗАРЯД

ЭЛЕМЕНТА́РНЫЙ ЭЛЕКТРИ́ЧЕСКИЙ ЗАРЯ́Д (е ), минимальный электрический заряд, положительный или отрицательный, равный величине заряду электрона.
Предположение о том, что любой наблюдаемый в эксперименте электрический заряд всегда кратен элементарному, было высказано Б. Франклином (см. ФРАНКЛИН Бенджамин) в 1752 г. Благодаря опытам М. Фарадея (см. ФАРАДЕЙ Майкл) по электролизу величина элементарного заряда была вычислена в 1834 г. На существование элементарного электрического заряда также указал в 1874 г. английский ученый Дж.Стони. Он же ввел в физику понятие «электрон» и предложил способ вычисления значения элементарного заряда. Впервые экспериментально элементарный электрический заряд был измерен Р. Милликеном (см. МИЛЛИКЕН Роберт Эндрус) в 1908 г.
Материальными носителями элементарного электрического заряда в природе являются заряженные элементарные частицы (см. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ) .
Электрический заряд (см. ЭЛЕКТРИЧЕСКИЙ ЗАРЯД) любой микросистемы и макроскопических тел всегда равен алгебраической сумме элементарных зарядов, входящих в систему, то есть целому кратному от величины е (или нулю).
Установленное в настоящее время значение абсолютной величины элементарного электрического заряда (см. ЭЛЕМЕНТАРНЫЙ ЭЛЕКТРИЧЕСКИЙ ЗАРЯД) составляет е = (4,8032068 0,0000015) . 10 -10 единиц СГСЕ, или 1,60217733 . 10 -19 Кл. Вычисленная по формуле величина элементарного электрического заряда, выраженная через физические константы, дает значение для элементарного электрического заряда: e = 4,80320419(21) . 10 -10 , или: е =1,602176462(65) . 10 -19 Кл.
Считается, что этот заряд действительно элементарен, то есть он не может быть разделен на части, а заряды любых объектов являются его целыми кратными. Электрический заряд элементарной частицы является ее фундаментальной характеристикой и не зависит от выбора системы отсчета. Элементарный электрический заряд в точности равен величине электрического заряда электрона, протона и почти всех других заряженных элементарных частиц, которые тем самым являются материальными носителями наименьшего заряда в природе.
Существует положительный и отрицательный элементарный электрический заряд, причем элементарная частица и ее античастица имеют заряды противоположных знаков. Носителем элементарного отрицательного заряда является электрон, масса которого me = 9,11 . 10 -31 кг. Носителем элементарного положительного заряда является протон, масса которого mp = 1, 67 . 10 -27 кг.
Тот факт, что электрический заряд встречается в природе лишь в виде целого числа элементарных зарядов, можно назвать квантованием электрического заряда. Почти все заряженные элементарные частицы имеют заряд е - или е + (исключение - некоторые резонансы с зарядом, кратным е); частицы с дробными электрическими зарядами не наблюдались, однако в современной теории сильного взаимодействия - квантовой хромодинамике - предполагается существование частиц - кварков - с зарядами, кратными 1 / 3 е.
Элементарный электрический заряд не может быть уничтожен; этот факт составляет содержание закона сохранения электрического заряда на микроскопическом уровне. Электрические заряды могут исчезать и возникать вновь. Однако всегда возникают или исчезают два элементарных заряда противоположных знаков.
Величина элементарного электрического заряда является константой электромагнитных взаимодействий и входит во все уравнения микроскопической электродинамики.