Квантовое туннелирование. Туннельный эффект

ТУННЕЛЬНЫЙ ЭФФЕКТ , квантовый эффект, состоящий в проникновении квантовой частицы сквозь область пространства, в к-рой согласно законам классич. физики нахождение частицы запрещено. Классич. частица, обладающая полной энергией E и находящаяся в потенц. поле, может пребывать лишь в тех областях пространства, в к-рых ее полная энергия не превышает потенц. энергию U взаимодействия с полем. Поскольку волновая ф-ция квантовой частицы отлична от нуля во всем пространстве и вероятность нахождения частицы в определенной области пространства задается квадратом модуля волновой ф-ции, то и в запрещенных (с точки зрения классич. механики) областях волновая ф-ция отлична от нуля.

Т уннельный эффект удобно иллюстрировать на модельной задаче об одномерной частице в поле потенциала U(x) (x - координата частицы). В случае симметричного двухъямного потенциала (рис. а)волновая ф-ция должна "умещаться" внутри ям, т. е. она представляет собой стоячую волну. Дискретные энерге-тич. уровни, к-рые расположены ниже барьера, разделяющего минимумы потенциала, образуют близко расположенные (почти вырожденные) . Разность энергетич. уровней, составляющих , наз. туннельным расщеплени-е м, эта разность обусловлена тем, что точное решение задачи (волновая ф-ция) для каждого из дело-кализовано в обоих минимумах потенциала и все точные решения отвечают невырожденным уровням (см. ). Вероятность туннельного эффекта определяется коэффициентом прохождения сквозь барьер волнового пакета, к-рый описывает нестационарное состояние частицы, локализованной в одном из минимумов потенциала.





Кривые потенц. энергии U (х)частицы в случае, когда на нее действует сила притяжения (а - две потенц. ямы, б - одна потенц. яма), и в случае, когда на частицу действует сила отталкивания (отталкивательный потенциал, в). E -полная энергия частицы, х - координата. Тонкими линиями изображены волновые ф-ции.

В потенц. поле с одним локальным минимумом (рис. б)для частицы с энергией E, большей потенциала взаимодействия при c =, дискретные энергетич. состояния отсутствуют, но существует набор квазистационарных состояний, в к-рых велика относит. вероятность нахождения частицы вблизи минимума. Волновые пакеты, отвечающие таким квазистационарным состояниям, описывают метастабильные ; волновые пакеты расплываются и исчезают вслед-ствие туннельного эффекта. Эти состояния характеризуются временем жизни (вероятностью распада) и шириной энергетич. уровня.

Для частицы в отталкивательном потенциале (рис. в)волновой пакет, описывающий нестационарное состояние по одну сторону от потенц. барьера, даже если энергия частицы в этом состоянии меньше высоты барьера, может с определенной вероятностью (наз. вероятностью проникновения или вероятностью туннелирования) проходить по др. сторону барьера.

Наиб. важные для проявления туннельного эффекта: 1) туннельные расщепления дискретных колебат., вращат. и электронно-ко-лебат. уровней. Расщепления колебат. уровней в с неск. эквивалентными равновесными ядерными конфигурациями - это инверсионное удвоение (в типа ), расщепление уровней в с заторможенным внутр. вращением ( , ) или в , для к-рых допустимы внутримол. перегруппировки, приводящие к эквивалентным равновесным конфигурациям (напр., PF 5). Если разл. эквивалентные минимумы на оказываются разделенными потенц. барьерами (напр., равновесные конфигурации для право- и левовращающих сложных ), то адекватное · описание реальных мол. систем достигается с помощью, локализованных волновых пакетов. В этом случае дело-кализованных в двух минимумах стационарных состояний неустойчива: под действием очень малых возмущений возможно образование двух состояний, локализованных в том или ином минимуме.

Расщепление квазивырожденных групп вращат. состояний (т. наз. вращательных к л а с т е r о в) также обусловлено туннелированием мол. системы между окрестностями неск. эквивалентных стационарных осей вращения. Расщепление электронно-колебат. (вибронных) состояний происходит в случае сильных Яна - Теллера эффектов. С туннельным расщеплением связано и существование зон, образуемых электронными состояниями отдельных или мол. фрагментов в с периодич. структурой.

2) Явления переноса частиц и элементарных возбуждений. Данная совокупность явлений включает нестационарные процессы, описывающие переходы между дискретными состояниями и распад квазистационарных состояний. Переходы между дискретными состояниями с волновыми ф-циями, локализованными в разл. минимумах одного адиабатич. потенциала, соответствуют разнообразным хим. р-циям. Туннельный эффект всегда вносит нек-рый вклад в скорость р-ции, однако этот вклад существен только при низких т-рах, когда надбарьер-ный переход из исходного состояния в конечное маловероятен из-за низкой заселенности соответствующих уровней энергии. Туннельный эффект проявляется в неаррениусовском поведении скорости r -ции; характерный пример - рост цепи при ради-ационно-инициированной твердого . Скорость этого процесса при т-ре ок. 140 К удовлетворительно описывается законом Аррениуса с

Из главы 1 вы, должно быть, помните, что квантовое туннелирование - это процесс, в ходе которого частицы преодолевают непреодолимые барьеры с той же легкостью, с какой звук проходит сквозь стены. Квантовое туннелирование было открыто в 1926 году немецким физиком Фридрихом Хундом и вскоре после этого было успешно использовано Георгием Гамовым, Рональдом Гернеем и Эдвардом Кондоном для объяснения понятия радиоактивного распада, причем все трое применили при этом новую в то время математику квантовой механики. Квантовое туннелирование стало одним из главных понятий ядерной физики, а впоследствии нашло широкое применение в материаловедении и химии. Как мы уже говорили, этот эффект имеет огромное значение для земной жизни, поскольку именно благодаря ему пары положительно заряженных ядер водорода, находящиеся внутри Солнца, сливаются воедино, начиная тем самым процесс превращения водорода в гелий, при котором выделяется огромное количество солнечной энергии. И все же до недавнего времени никто не предполагал, что квантовое туннелирование как-то связано с процессами, протекающими в живой материи.

Квантовое туннелирование можно понимать как способ, с помощью которого частицы, находящиеся сначала по одну сторону барьера, попадают на другую его сторону, причем здравый смысл подсказывает, что этот способ невозможен. Под «барьером» мы подразумеваем физически непреодолимый (без необходимого количества энергии) участок пространства - что-то похожее на силовые поля из научной фантастики. Такой барьер может представлять собой узкий участок изоляционного материала, разделяющего проводники, или пустое пространство, например расстояние между двумя ферментами в дыхательной цепи. Он также может быть чем-то вроде энергетического «холма», который мы описывали выше, и ограничивать скорость протекания химических реакций (см. рис. 3.1). Представьте себе мячик, который толкнули вверх по склону невысокого холма. Для того чтобы мячик докатился до вершины, а затем скатился вниз по другому склону, необходимо толкнуть его достаточно сильно. Поднимаясь по склону, мяч будет замедлять движение и без необходимого количества энергии (полученной при достаточно сильном толчке) просто остановится и скатится туда, откуда его толкнули. Согласно классической механике Ньютона, единственный способ заставить мяч преодолеть барьер в виде вершины холма заключается в том, чтобы придать ему достаточное количество энергии для преодоления этой «энергетической» вершины. Но если бы на месте мяча оказался, скажем, электрон, а холм представлял бы собой барьер энергии отталкивания, существовала бы вероятность того, что электрон преодолел бы этот барьер в виде волны, прокладывая себе альтернативный и более эффективный путь. Это и есть квантовое туннелирование (рис. 3.5).


Рис. 3.5. Квантовое туннелирование сквозь энергетический ландшафт

Важной особенностью квантового мира является то, что чем легче частица, тем легче она преодолевает энергетический барьер. Следовательно, ничего удивительного нет в том, что, как только стало понятно, что этот процесс - обычное явление для внутриатомного мира, ученые быстро обнаружили, что наиболее распространено в квантовом мире именно туннелирование электронов, поскольку они представляют собой чрезвычайно легкие элементарные частицы. Эмиссия электронов из металлов под действием электрического поля была описана в конце 1920-х годов именно как туннельный эффект. Квантовое туннелирование объяснило и то, как именно происходит радиоактивный распад: ядра определенных атомов, например урана, вдруг выбрасывают частицу. Этот пример считается первым успешным применением квантовой механики для решения проблем ядерной физики. В современной химии также подробно описано квантовое туннелирование электронов, протонов (ядер водорода) и даже более тяжелых атомов.

Важной особенностью квантового туннелирования является его зависимость (как и многих других квантовых явлений) от волновой природы частиц вещества. Однако тело, состоящее из большого количества частиц, которым необходимо преодолеть барьер, должно поддерживать такие условия, в которых волновые аспекты всех его составляющих подходили бы друг другу (например, совпадали бы длины волн). Иными словами, тело должно представлять собой то, что мы назвали бы когерентной системой или попросту системой, работающей «в унисон». Декогеренция описывает процесс, в ходе которого множество квантовых волн стремительно выбиваются из общего ритма и нарушают общее когерентное поведение, лишая тело способности к квантовому туннелированию. Частица может участвовать в квантовом туннелировании, только если она сохраняет волновые свойства, необходимые для преодоления барьера. Вот почему крупным объектам, например футбольным мячам, не свойственно квантовое туннелирование: они состоят из триллионов атомов, поведение и волновые свойства которых невозможно скоординировать и превратить в когерентную систему.

По квантовым меркам живые клетки также являются крупными объектами, поэтому с первого взгляда возможность квантового туннелирования в теплой и влажной среде живых клеток, где атомы и молекулы движутся в основном беспорядочно, кажется невероятной. Однако, как мы уже выяснили, внутренне строение фермента отличается от неупорядоченной среды клетки: движение его частиц представляет собой скорее хорошо поставленный танец, нежели суетливую толкотню. Давайте разберемся, насколько важна эта хореография частиц для жизни.

<<< Назад
Вперед >>>

Имеется вероятность, что квантовая частица проникнет за барьер, который непреодолим для классической элементарной частицы.

Представьте шарик, катающийся внутри сферической ямки, вырытой в земле. В любой момент времени энергия шарика распределена между его кинетической энергией и потенциальной энергией силы тяжести в пропорции, зависящей от того, насколько высоко шарик находится относительно дна ямки (согласно первому началу термодинамики). При достижении шариком борта ямки возможны два варианта развития событий. Если его совокупная энергия превышает потенциальную энергию гравитационного поля, определяемую высотой точки нахождения шарика, он выпрыгнет из ямки. Если же совокупная энергия шарика меньше потенциальной энергии силы тяжести на уровне борта лунки, шарик покатится вниз, обратно в ямку, в сторону противоположного борта; в тот момент, когда потенциальная энергия будет равна совокупной энергии шарика, он остановится и покатится назад. Во втором случае шарик никогда не выкатится из ямки, если не придать ему дополнительную кинетическую энергию - например, подтолкнув. Согласно законам механики Ньютона , шарик никогда не покинет ямку без придания ему дополнительного импульса, если у него недостаточно собственной энергии для того, чтобы выкатиться за борт.

А теперь представьте, что борта ямы возвышаются над поверхностью земли (наподобие лунных кратеров). Если шарику удастся перевалить за приподнятый борт такой ямы, он покатится дальше. Важно помнить, что в ньютоновском мире шарика и ямки сам факт, что, перевалив за борт ямки, шарик покатится дальше, не имеет смысла, если у шарика недостаточно кинетической энергии для достижения верхнего края. Если он не достигнет края, он из ямы просто не выберется и, соответственно, ни при каких условиях, ни с какой скоростью и никуда не покатится дальше, на какой бы высоте над поверхностью снаружи ни находился край борта.

В мире квантовой механики дело обстоит иначе. Представим себе, что в чем-то вроде такой ямы находится квантовая частица. В этом случае речь идет уже не о реальной физической яме, а об условной ситуации, когда частице требуется определенный запас энергии, необходимый для преодоления барьера, мешающего ей вырваться наружу из того, что физики условились называть «потенциальной ямой» . У этой ямы есть и энергетической аналог борта - так называемый «потенциальный барьер» . Так вот, если снаружи от потенциального барьера уровень напряженности энергетического поля ниже,чем энергия, которой обладает частица, у нее имеется шанс оказаться «за бортом», даже если реальной кинетической энергии этой частицы недостаточно, чтобы «перевалить» через край борта в ньютоновском понимании. Этот механизм прохождения частицы через потенциальный барьер и назвали квантовым туннельным эффектом.

Работает он так: в квантовой механике частица описывается через волновую функцию, которая связана с вероятностью местонахождения частицы в данном месте в данный момент времени. Если частица сталкивается с потенциальным барьером, уравнение Шрёдингера позволяет рассчитать вероятность проникновения частицы через него, поскольку волновая функция не просто энергетически поглощается барьером, но очень быстро гасится - по экспоненте. Иными словами, потенциальный барьер в мире квантовой механики размыт. Он, конечно, препятствует движению частицы, но не является твердой, непроницаемой границей, как это имеет место в классической механике Ньютона.

Если барьер достаточно низок или если суммарная энергия частицы близка к пороговой, волновая функция, хотя и убывает стремительно при приближении частицы к краю барьера, оставляет ей шанс преодолеть его. То есть имеется определенная вероятность, что частица будет обнаружена по другую сторону потенциального барьера - в мире механики Ньютона это было бы невозможно. А раз уж частица перевалила через край барьера (пусть он имеет форму лунного кратера), она свободно покатится вниз по его внешнему склону прочь от ямы, из которой выбралась.

Квантовый туннельный переход можно рассматривать как своего рода «утечку» или «просачивание» частицы через потенциальный барьер, после чего частица движется прочь от барьера. В природе достаточно примеров такого рода явлений, равно как и в современных технологиях. Возьмем типичный радиоактивный распад : тяжелое ядро излучает альфа-частицу, состоящую из двух протонов и двух нейтронов. С одной стороны, можно представить себе этот процесс таким образом, что тяжелое ядро удерживает внутри себя альфа-частицу посредством сил внутриядерной связи, подобно тому как шарик удерживался в ямке в нашем примере. Однако даже если у альфа-частицы недостаточно свободной энергии для преодоления барьера внутриядерных связей, всё равно имеется вероятность ее отрыва от ядра. И, наблюдая спонтанное альфа-излучение, мы получаем экспериментальное подтверждение реальности туннельного эффекта.

Другой важный пример туннельного эффекта - процесс термоядерного синтеза, питающий энергией звезды (см. Эволюция звезд). Один из этапов термоядерного синтеза - столкновение двух ядер дейтерия (по одному протону и одному нейтрону в каждом), в результате чего образуется ядро гелия-3 (два протона и один нейтрон) и испускается один нейтрон. Согласно закону Кулона , между двумя частицами с одинаковым зарядом (в данном случае протонами, входящими в состав ядер дейтерия) действует мощнейшая сила взаимного отталкивания - то есть налицо мощнейший потенциальный барьер. В мире по Ньютону ядра дейтерия попросту не могли бы сблизиться на достаточное расстояние и синтезировать ядро гелия. Однако в недрах звезд температура и давление столь высоки, что энергия ядер приближается к порогу их синтеза (в нашем смысле, ядра находятся почти на краю барьера), в результате чего начинает действовать туннельный эффект, происходит термоядерный синтез - и звезды светят.

Наконец, туннельный эффект уже на практике применяется в технологии электронных микроскопов. Действие этого инструмента основано на том, что металлическое острие щупа приближается к исследуемой поверхности на сверхмалое расстояние. При этом потенциальный барьер не дает электронам из атомов металла перетечь на исследуемую поверхность. При перемещении щупа на предельно близком расстоянии вдоль исследуемой поверхности он как бы перебирает атом за атомом. Когда щуп оказывается в непосредственной близости от атомов, барьер ниже, чем когда щуп проходит в промежутках между ними. Соответственно, когда прибор «нащупывает» атом, ток возрастает за счет усиления утечки электронов в результате туннельного эффекта, а в промежутках между атомами ток падает. Это позволяет подробнейшим образом исследовать атомные структуры поверхностей, буквально «картографируя» их. Кстати, электронные микроскопы как раз и дают окончательное подтверждение атомарной теории строения материи.

(решение задач блока ФИЗИКА, как и других блоков, позволит отобрать ТРЕХ человек на очный тур, набравших при решении задач ЭТОГО блока наибольшее количество баллов. Дополнительно по результатам очного тура эти претенденты будут бороться за специальную номинацию «Физика наносистем ». На очный тур будет отобрано также еще 5 человек, набравших наибольшее абсолютное количество баллов, поэтому после решения задач по своей специальности есть полный смысл решать задачи из других блоков . )

Одним из основных отличий наноструктур от макроскопических тел является зависимость их химических и физических свойств от размера. Наглядным примером этого служит туннельный эффект, который заключается в проникновении легких частиц (электрона, протона) в области, недоступные для них энергетически. Этот эффект играет важную роль в таких процессах как например перенос заряда в фотосинтетических устройствах живых организмов (стоит заметить, что биологические реакционные центры являются одними из наиболее эффективных наноструктур).

Туннельный эффект можно объяснить волновой природой легких частиц и принципом неопределенности. Благодаря тому, что частицы малого размера не имеют определенного положения в пространстве, для них не существует понятия траектории. Следовательно, для перемещения из одной точки в другую частица не должна проходить по линии, их соединяющей, и таким образом может «обходить» области, запрещенные по энергии. В связи с отсутствием у электрона точной координаты, его состояние описывают с помощью волновой функции, характеризующей распределение вероятности по координате. На рисунке показан типичный вид волновой функции при туннелировании под энергетический барьер.

Вероятность p проникновения электрона сквозь потенциальный барьер зависит от высоты U и ширины последнего l (формула 1 , слева), где m – масса электрона, E – энергия электрона, h – постоянная Планка с чертой.

1. Определите вероятность, того что электрон туннелирует на расстояние 0.1 нм, если разница энергий U – E = 1 эВ (2 балла ). Рассчитайте разность энергий (в эВ и кДж/моль), при которой электрон сможет туннелировать на расстояние 1 нм с вероятностью 1% (2 балла ).

Одним из наиболее заметных следствий туннельного эффекта является необычная зависимость константы скорости химической реакции от температуры. При уменьшении температуры константа скорости стремится не к 0 (как можно ожидать из уравнения Аррениуса), а к постоянному значению, которое определяется вероятностью туннелирования ядер p (ф ормула 2 , слева), где A – предэкспоненциальный множитель, E A – энергия активации. Это можно объяснить тем, что при высоких температурах в реакцию вступают только те частицы, энергия которых выше энергии барьера, а при низких температурах реакция идет исключительно за счет туннельного эффекта.

2. Из приведенных ниже экспериментальных данных определите энергию активации и вероятность туннелирования (3 балла ).

k (T ), c – 1

В современных квантовых электронных устройствах используется эффект резонансного туннелирования. Этот эффект проявляется, если электрон встречает два барьера, разделенные потенциальной ямой. Если энергия электрона совпадает с одним из уровней энергии в яме (это – условие резонанса), то общая вероятность туннелирования определяется прохождением через два тонких барьера, если же нет – то на пути электрона встает широкий барьер, который включает потенциальную яму, и общая вероятность туннелирования стремится к 0.

3. Сравните вероятности резонансного и нерезонансного туннелирования электрона при следующих параметрах: ширина каждого из барьеров 0.5 нм, ширина ямы между барьерами 2 нм, высота всех потенциальных барьеров относительно энергии электрона равна 0.5 эВ (3 балла ). В каких устройствах используется принцип туннелирования (3 балла )?