Основные виды неравенств и их свойства. Основные свойства неравенств

Представлены основные виды неравенств, включая неравенства Бернулли, Коши - Буняковского, Минковского, Чебышева. Рассмотрены свойства неравенств и действия над ними. Даны основные методы решения неравенств.

Формулы основных неравенств

Формулы универсальных неравенств

Универсальные неравенства выполняются при любых значениях входящих в них величин. Ниже перечислены основные виды универсальных неравенств.

1) | a ± b | ≤ |a| + |b| ; | a 1 ± a 2 ± ... ± a n | ≤ |a 1 | + |a 2 | + ... + |a n |

2) |a| + |b| ≥ | a - b | ≥ | |a| - |b| |

3)
Равенство имеет место только при a 1 = a 2 = ... = a n .

4) Неравенство Коши - Буняковского

Равенство имеет место тогда и только тогда, когда α a k = β b k для всех k = 1, 2, ..., n и некоторых α, β, |α| + |β| > 0 .

5) Неравенство Минковского , при p ≥ 1

Формулы выполнимых неравенств

Выполнимые неравенства выполняются при определенных значениях входящих в них величин.

1) Неравенство Бернулли:
.
В более общем виде:
,
где , числа одного знака и больше, чем -1 : .
Лемма Бернулли:
.
См. «Доказательства неравенств и леммы Бернулли ».

2)
при a i ≥ 0 (i = 1, 2, ..., n) .

3) Неравенство Чебышева
при 0 < a 1 ≤ a 2 ≤ ... ≤ a n и 0 < b 1 ≤ b 2 ≤ ... ≤ b n
.
При 0 < a 1 ≤ a 2 ≤ ... ≤ a n и b 1 ≥ b 2 ≥ ... ≥ b n > 0
.

4) Обобщенные неравенства Чебышева
при 0 < a 1 ≤ a 2 ≤ ... ≤ a n и 0 < b 1 ≤ b 2 ≤ ... ≤ b n и k натуральном
.
При 0 < a 1 ≤ a 2 ≤ ... ≤ a n и b 1 ≥ b 2 ≥ ... ≥ b n > 0
.

Свойства неравенств

Свойства неравенств - это набор тех правил, которые выполняются при их преобразовании. Ниже представлены свойства неравенств. Подразумевается, что исходные неравенства выполняются при значениях x i (i = 1, 2, 3, 4) , принадлежащих некоторому, заранее определенному, интервалу.

1) При изменении порядка следования сторон, знак неравенства меняется на противоположный.
Если x 1 < x 2 , то x 2 > x 1 .
Если x 1 ≤ x 2 , то x 2 ≥ x 1 .
Если x 1 ≥ x 2 , то x 2 ≤ x 1 .
Если x 1 > x 2 , то x 2 < x 1 .

2) Одно равенство эквивалентно двум нестрогим неравенствам разного знака.
Если x 1 = x 2 , то x 1 ≤ x 2 и x 1 ≥ x 2 .
Если x 1 ≤ x 2 и x 1 ≥ x 2 , то x 1 = x 2 .

3) Свойство транзитивности
Если x 1 < x 2 и x 2 < x 3 , то x 1 < x 3 .
Если x 1 < x 2 и x 2 ≤ x 3 , то x 1 < x 3 .
Если x 1 ≤ x 2 и x 2 < x 3 , то x 1 < x 3 .
Если x 1 ≤ x 2 и x 2 ≤ x 3 , то x 1 ≤ x 3 .

4) К обеим частям неравенства можно прибавить (вычесть) одно и то же число.
Если x 1 < x 2 , то x 1 + A < x 2 + A .
Если x 1 ≤ x 2 , то x 1 + A ≤ x 2 + A .
Если x 1 ≥ x 2 , то x 1 + A ≥ x 2 + A .
Если x 1 > x 2 , то x 1 + A > x 2 + A .

5) Если есть два или более неравенств со знаком одного направления, то их левые и правые части можно сложить.
Если x 1 < x 2 , x 3 < x 4 , то x 1 + x 3 < x 2 + x 4 .
Если x 1 < x 2 , x 3 ≤ x 4 , то x 1 + x 3 < x 2 + x 4 .
Если x 1 ≤ x 2 , x 3 < x 4 , то x 1 + x 3 < x 2 + x 4 .
Если x 1 ≤ x 2 , x 3 ≤ x 4 , то x 1 + x 3 ≤ x 2 + x 4 .
Аналогичные выражения имеют место для знаков ≥, >.
Если в исходных неравенствах имеются знаки не строгих неравенств и хотя бы одно строгое неравенство (но все знаки имеют одинаковое направление), то при сложении получается строгое неравенство.

6) Обе части неравенства можно умножить (разделить) на положительное число.
Если x 1 < x 2 и A > 0 , то A · x 1 < A · x 2 .
Если x 1 ≤ x 2 и A > 0 , то A · x 1 ≤ A · x 2 .
Если x 1 ≥ x 2 и A > 0 , то A · x 1 ≥ A · x 2 .
Если x 1 > x 2 и A > 0 , то A · x 1 > A · x 2 .

7) Обе части неравенства можно умножить (разделить) на отрицательное число. При этом знак неравенства изменится на противоположный.
Если x 1 < x 2 и A < 0 , то A · x 1 > A · x 2 .
Если x 1 ≤ x 2 и A < 0 , то A · x 1 ≥ A · x 2 .
Если x 1 ≥ x 2 и A < 0 , то A · x 1 ≤ A · x 2 .
Если x 1 > x 2 и A < 0 , то A · x 1 < A · x 2 .

8) Если есть два или более неравенств с положительными членами, со знаком одного направления, то их левые и правые части можно умножить друг на друга.
Если x 1 < x 2 , x 3 < x 4 , x 1 , x 2 , x 3 , x 4 > 0 то x 1 · x 3 < x 2 · x 4 .
Если x 1 < x 2 , x 3 ≤ x 4 , x 1 , x 2 , x 3 , x 4 > 0 то x 1 · x 3 < x 2 · x 4 .
Если x 1 ≤ x 2 , x 3 < x 4 , x 1 , x 2 , x 3 , x 4 > 0 то x 1 · x 3 < x 2 · x 4 .
Если x 1 ≤ x 2 , x 3 ≤ x 4 , x 1 , x 2 , x 3 , x 4 > 0 то x 1 · x 3 ≤ x 2 · x 4 .
Аналогичные выражения имеют место для знаков ≥, >.
Если в исходных неравенствах имеются знаки не строгих неравенств и хотя бы одно строгое неравенство (но все знаки имеют одинаковое направление), то при умножении получается строгое неравенство.

9) Пусть f(x) - монотонно возрастающая функция. То есть при любых x 1 > x 2 , f(x 1) > f(x 2) . Тогда к обеим частям неравенства можно применить эту функцию, от чего знак неравенства не изменится.
Если x 1 < x 2 , то f(x 1) < f(x 2) .
Если x 1 ≤ x 2 , то f(x 1) ≤ f(x 2) .
Если x 1 ≥ x 2 , то f(x 1) ≥ f(x 2) .
Если x 1 > x 2 , то f(x 1) > f(x 2) .

10) Пусть f(x) - монотонно убывающая функция, То есть при любых x 1 > x 2 , f(x 1) < f(x 2) . Тогда к обеим частям неравенства можно применить эту функцию, от чего знак неравенства изменится на противоположный.
Если x 1 < x 2 , то f(x 1) > f(x 2) .
Если x 1 ≤ x 2 , то f(x 1) ≥ f(x 2) .
Если x 1 ≥ x 2 , то f(x 1) ≤ f(x 2) .
Если x 1 > x 2 , то f(x 1) < f(x 2) .

Методы решения неравенств

Решение неравенств методом интервалов

Метод интервалов применим, если в неравенство входит одна переменная, которую обозначим как x , и оно имеет вид:
f(x) > 0
где f(x) - непрерывная функция, имеющая конечное число точек разрывов. Знак неравенства может быть любым: >, ≥, <, ≤ .

Метод интервалов заключается в следующем.

1) Находим область определения функции f(x) и отмечаем ее интервалами на числовой оси.

2) Находим точки разрыва функции f(x) . Например, если это дробь, то находим точки, в которых знаменатель обращается в нуль. Отмечаем эти точки на числовой оси.

3) Решаем уравнение
f(x) = 0 .
Корни этого уравнения отмечаем на числовой оси.

4) В результате числовая ось окажется разбитой точками на интервалы (отрезки). Внутри каждого интервала, входящего в область определения, выбираем любую точку и в этой точке вычисляем значение функции. Если это значение больше нуля, то над отрезком (интервалом) ставим знак „+“ . Если это значение меньше нуля, то над отрезком (интервалом) ставим знак „-“ .

5) Если неравенство имеет вид: f(x) > 0 , то выбираем интервалы с знаком „+“ . Решением неравенства будет объединение этих интервалов, в которые не входят их границы.
Если неравенство имеет вид: f(x) ≥ 0 , то к решению добавляем точки, в которых f(x) = 0 . То есть часть интервалов, возможно, будут иметь закрытые границы (граница принадлежит интервалу). другая часть может иметь открытые границы (граница не принадлежит интервалу).
Аналогично, если неравенство имеет вид: f(x) < 0 , то выбираем интервалы с знаком „-“ . Решением неравенства будет объединение этих интервалов, в которые не входят их границы.
Если неравенство имеет вид: f(x) ≤ 0 , то к решению добавляем точки, в которых f(x) = 0 .

Решение неравенств, применяя их свойства

Этот метод применим для неравенств любой сложности. Он состоит в том, чтобы, применяя свойства (представленные выше), привести неравенства к более простому виду и получить решение. Вполне возможно, что при этом получится не одно, а система неравенств. Это универсальный метод. Он применим для любых неравенств.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Урок и презентация на тему: "Основные свойства числовых неравенств и способы их решения."

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 8 класса
Комбинаторика и теория вероятностей Уравнения и неравенства

Введение в числовые неравенства

Ребята, с неравенствами мы уже сталкивались, например, когда начинали знакомиться с понятием корня квадратного . Интуитивно понятно, что с помощью неравенств можно оценить, какое из данных чисел больше или меньше. Для математического описания достаточно добавить специальный символ, который будет означать либо больше, либо меньше.

Запись выражения $a>b$ на математическом языка означает, что число $a$ больше числа $b$. В свою очередь, это значит, что $a-b$ - положительное число.
Запись выражения $a

Как и практически все математические объекты неравенства имеют некоторые свойства. Изучением этих свойств мы и займемся на этом уроке.

Свойство 1.
Если $a>b$ и $b>c$, то $a>c$.

Доказательство.
Очевидно, что $10>5$, и $5>2$, и конечно $10>2$. Но математика любит строгие доказательства для самого общего случая.
Если $a>b$, то $a-b$ - положительное число. Если $b>c$, то $b-c$ - положительное число. Давайте сложим два полученных положительных числа.
$a-b+b-c=a-c$.
Сумма двух положительных чисел есть положительное число, но тогда $a-c$ также положительное число. Из чего следует, что $a>c$. Свойство доказано.

Более наглядно данное свойство можно показать, используя числовую прямую. Если $a>b$, то число $a$ на числовой прямой будет лежать правее $b$. Соответственно, если $b>c$, то число $b$ будет лежать правее числа $с$.
Как видно из рисунка точка $a$ в нашем случае находится правее точки $c$, а это означает, что $a>c$.

Свойство 2.
Если $a>b$, то $a+c>b+c$.
Иначе говоря, если число $a$ больше числа $b$, то какое бы мы число не прибавили (положительное или отрицательное) к этим числам, знак неравенства будет также сохраняться. Доказывается данное свойство очень легко. Нужно выполнить вычитание. Та переменная, которую прибавляли, исчезнет и получится верное исходное неравенство.

Свойство 3.
а) Если обе части неравенства умножить на положительное число, то знак неравенства сохраняется.
Если $a>b$ и $c>0$, тогда $ac>bc$.
б) Если обе части неравенства умножить на отрицательное число, то знак неравенства следует поменять на противоположный.
Если $a>b$ и $c Если $abc$.

При делении следует действовать тем же образом (делим на положительное число - знак сохраняется, делим на отрицательно число - знак меняется).

Свойство 4.
Если $a>b$ и $c>d$, то $a+c>b+d$.

Доказательство.
Из условия: $a-b$ - положительное число и $c-d$ - положительное число.
Тогда сумма $(a-b)+(c-d)$ - тоже положительное число.
Поменяем местами некоторые слагаемые $(a+с)-(b+d)$.
От перемены мест слагаемых сумма не изменяется.
Значит $(a+с)-(b+d)$ - положительное число и $a+c>b+d$.
Свойство доказано.

Свойство 5.
Если $a, b ,c, d$ - положительные числа и $a>b$, $c>d$, то $ac>bd$.

Доказательство.
Так как $a>b$ и $c>0$, то, используя свойство 3, имеем $ac>bc$.
Так как $c>d$ и $b>0$, то, используя свойство 3, имеем $cb>bd$.
Итак, $ac>bc$ и $bc >bd$.
Тогда, используя свойство 1, получаем $ac>bd$. Что и требовалось доказать.

Определение.
Неравенства вида $a>b$ и $c>d$ ($a Неравенства вида $a>b$ и $cd$) называются неравенствами противоположного смысла.

Тогда свойство 5 можно перефразировать. При умножение неравенств одного смысла, у которых левые и правые части положительные, получается неравенство того же смысла.

Свойство 6.
Если $a>b$ ($a>0$, $b>0$), то $a^n>b^n$, где $n$ – любое натуральное число.
Если обе части неравенства положительные числа и их возвести в одну и ту же натуральную степень, то получится неравенство того же смысла.
Заметим: если $n$ – нечетное число, то для любых по знаку чисел $a$ и $b$ свойство 6 выполняется.

Свойство 7.
Если $a>b$ ($a>0$, $b>0$), то $\frac{1}{a}

Доказательство.
Чтобы доказать данное свойство, необходимо при вычитании $\frac{1}{a}-\frac{1}{b}$ получить отрицательное число.
$\frac{1}{a}-\frac{1}{b}=\frac{b-a}{ab}=\frac{-(a-b)}{ab}$.

Мы знаем, что $a-b$ - положительное число, и произведение двух положительных чисел - тоже положительное число, т.е. $ab>0$.
Тогда $\frac{-(a-b)}{ab}$ - отрицательное число. Свойство доказано.

Свойство 8.
Если $a>0$, то выполняется неравенство: $a+\frac{1}{a}≥2$.

Доказательство.
Рассмотрим разность.
$a+\frac{1}{a}-2=\frac{a^2-2a+1}{a}=\frac{(a-1)^2}{a}$ - неотрицательное число.
Свойство доказано.

Свойство 9. Неравенство Коши (среднее арифметическое больше либо равно среднего геометрического).
Если $a$ и $b$ - неотрицательные числа, то выполняется неравенство: $\frac{a+b}{2}≥\sqrt{ab}$.

Доказательство.
Рассмотрим разность:
$\frac{a+b}{2}-\sqrt{ab}=\frac{a-2\sqrt{ab}+b}{2}=\frac{(\sqrt{a}-\sqrt{b})^2}{2}$ - неотрицательное число.
Свойство доказано.

Примеры решения неравенств

Пример 1.
Известно, что $-1.5 а) $3a$.
б) $-2b$.
в) $a+b$.
г) $a-b$.
д) $b^2$.
е) $a^3$.
ж) $\frac{1}{b}$.

Решение.
а) Воспользуемся свойством 3. Умножим на положительное число, значит знак неравенства не меняется.
$-1.5*3 $-4.5<3a<6.3$.

Б) Воспользуемся свойством 3. Умножим на отрицательное число, значит знак неравенства меняется.
$-2*3.1>-2*b>-2*5.3$.
$-10.3
в) Сложив неравенства одинакового смысла, получим неравенство того же смысла.
$-1.5+3.1 $1.6

Г) Умножим все части неравенства $3.1 $-5.3<-b<-3.1$.
Теперь выполним операцию сложения.
$-1.5-5.3 $-6.8

Д) Все части неравенства положительны, возведя их в квадрат, получим неравенство того же смысла.
${3.1}^2 $9.61

Е) Степень неравенства нечетная, тогда можно смело возводить в степень и не менять знак.
${(-1.5)}^3 $-3.375

Ж) Воспользуемся свойством 7.
$\frac{1}{5.3}<\frac{1}{b}<\frac{1}{3.1}$.
$\frac{10}{53}<\frac{1}{b}<\frac{10}{31}$.

Пример 2.
Сравните числа:
а) $\sqrt{5}+\sqrt{7}$ и $2+\sqrt{8}$.
б) $π+\sqrt{8}$ и $4+\sqrt{10}$.

Решение.
а) Возведем каждое из чисел в квадрат.
$(\sqrt{5}+\sqrt{7})^2=5+2\sqrt{35}+7=12+\sqrt{140}$.
$(2+\sqrt{8})^2=4+4\sqrt{8}+8=12+\sqrt{128}$.
Вычислим разность квадратов этих квадратов.
$(\sqrt{5}+\sqrt{7})^2-(2+\sqrt{8})^2=12+\sqrt{140}-12-\sqrt{128}=\sqrt{140}-\sqrt{128}$.
Очевидно, получили положительное число, что означает:
$(\sqrt{5}+\sqrt{7})^2>(2+\sqrt{8})^2$.
Так как оба числа положительных, то:
$\sqrt{5}+\sqrt{7}>2+\sqrt{8}$.

Задачи для самостоятельного решения

1. Известно, что $-2.2Найти оценки чисел.
а) $4a$.
б) $-3b$.
в) $a+b$.
г) $a-b$.
д) $b^4$.
е) $a^3$.
ж) $\frac{1}{b}$.
2. Сравните числа:
а) $\sqrt{6}+\sqrt{10}$ и $3+\sqrt{7}$.
б) $π+\sqrt{5}$ и $2+\sqrt{3}$.

§ 1 Универсальный способ сравнения чисел

Познакомимся с основными свойствами числовых неравенств, а также рассмотрим универсальный способ сравнения чисел.

Результат сравнения чисел можно записать с помощью равенства или неравенства. Неравенство может быть строгим и нестрогим. Например, а>3 - это строгое неравенство; а≥3 - это нестрогое неравенство. Способ сравнения чисел зависит от вида сравниваемых чисел. Например, если надо сравнить десятичные дроби, то мы сравниваем их поразрядно; если необходимо сравнить обыкновенные дроби с разными знаменателями, то надо привести их к общему знаменателю и сравнить числители. Но существует универсальный способ сравнения чисел. Он состоит в следующем: находят разность чисел a и b; если a - b > 0, то есть положительное число, то a > b; если a - b < 0, то есть отрицательное число, то a < b; если a - b = 0, то a = b. Этот способ удобно использовать для доказательства неравенств. Например, доказать неравенство:

2b2 - 6b + 1 > 2b(b- 3)

Воспользуемся универсальным способом сравнения. Найдем разность выражений 2b2 - 6b + 1и 2b(b - 3);

2b2 - 6b + 1- 2b(b-3)= 2b2 - 6b + 1 - 2b2 + 6b; приведем подобные слагаемые и получим 1. Так как 1 больше нуля, положительное число, то 2b2 - 6b+1 > 2b(b-3).

§ 2 Cвойства числовых неравенств

Свойство 1. Если a> b, b > c, то a> c.

Доказательство. Если a > b, то значит, разность a - b > 0, то есть положительное число. Если b >c, значит, разность b - c > 0, положительное число. Сложим положительные числа a - b и b - c, раскроем скобки и приведем подобные слагаемые, получим (a - b) +(b - c) = a- b +b - c= a - c. Так как сумма положительных чисел - число положительное, значит, a - c положительное число. Следовательно, a > c, что и требовалось доказать.

Свойство 2. Если a < b, c- любое число, то a + с < b+ с. Это свойство можно трактовать так: «К обеим частям верного неравенства можно прибавить одно и то же число, при этом знак неравенства не изменится».

Доказательство. Найдем разность выражений a + с и b+ с, раскроем скобки и приведем подобные слагаемые, получим (a + с) - (b+ с) = a + с - b - с = a - b. По условию a < b, тогда разность a - b- отрицательное число. Значит, и разность (a + с) -(b+ с) отрицательна. Следовательно, a + с < b+ с, что и требовалось доказать.

Свойство 3. Если a < b, c - положительное число, то aс < bс.

Если a < b, c- отрицательное число, то aс > bс.

Доказательство. Найдем разность выражений aс и bс, вынесем за скобки с, тогда имеем aс-bс = с(a-b). Но так как a

Если отрицательное число a-b умножим на положительное число с, то произведение с(a-b) отрицательно, следовательно, разность aс-bс отрицательна, а значит, aс

Если же отрицательное число a-b умножить на отрицательное число с, то произведение с(a-b) будет положительно, следовательно, и разность aс-bс будет положительна, значит, aс>bс. Что и требовалось доказать.

Например, a-7b.

Так как деление можно заменить умножением на число обратное, = n∙, то доказанное свойство можно применить и для деления. Таким образом, смысл этого свойства в следующем: «Обе части неравенства можно умножить или разделить на одно и то же положительное число, при этом знак неравенства не изменится. Обе части неравенства можно умножить или разделить на отрицательное число, при этом необходимо поменять знак неравенства на противоположный знак».

Рассмотрим следствие к свойству 3.

Следствие. Если a

Доказательство. Разделим обе части неравенства a

сократим дроби и получим

Утверждение доказано.

Действительно, например, 2 < 3, но

Свойство 4. Если a > b и c > d, то a + c > b+ d.

Доказательство. Так как a>b и c >d, то разности a-b и c-d - положительные числа. Тогда сумма этих чисел также положительное число (a-b)+(c-d). Раскроем скобки и сгруппируем (a-b)+(c-d) = a-b+ c-d= (a+с)-(b+ d). В виду этого равенства полученное выражение (a+с)-(b+ d) будет положительным числом. Следовательно, a+ c> b+ d.

Неравенства вида a>b, c >d или a < b, c< d называют неравенствами одинакового смысла, а неравенства a>b , c

Свойство 5. Если a > b, c > d, то ac> bd, где a, b, c , d- положительные числа.

Доказательство. Так как a>b и с - положительное число, то, используя свойство 3, получим aс > bс. Так как c >d и b- положительное число, то bc > bd. Следовательно, по первому свойству ac > bd. Смысл доказанного свойства в следующем: «Если умножить почленно неравенства одинакового смысла, у которых левая и правая части - положительные числа, то получим неравенство того же смысла»

Например, 6 < a < 7, 4 < b< 5 тогда, 24 < ab < 35.

Свойство 6. Если a < b, a и b - положительные числа, то an< bn, где n- натуральное число.

Доказательство. Если почленно перемножить n данных неравенств a < b, то, согласно утверждению свойства 5, получим an< bn. Прочесть доказанное утверждение можно так: «Если обе части неравенства - положительные числа, то их можно возвести в одну и ту же натуральную степень, сохранив знак неравенства».

§ 3 Применение свойств

Рассмотрим пример на применение рассмотренных нами свойств.

Пусть 33 < a < 34, 3 < b< 4. Оценить сумму a + b, разность a - b, произведение a ∙ b и частное a: b.

1) Оценим сумму a + b. Используя свойство 4, получим 33 + 3< a + b < 34 + 4 или

36 < a+ b <38.

2) Оценим разность a - b. Так как нет свойства на вычитание, то разность a - b заменим суммой a +(-b). Сначала оценим (- b). Для этого, используя свойство 3, обе части неравенства 3 < b< 4 умножим на -1, при этом меняем знак неравенства на противоположный знак 3 ∙ (-1) > b∙ (-1) > 4 ∙ (-1). Получим -4< -b< -3. Теперь можно сложить два неравенства одного знака 33< a < 34 и -4< -b< -3. Имеем 2 9< a - b <31.

3) Оценим произведение a ∙ b. По свойству 5 перемножим неравенства одного знака

Поле действительных чисел обладает свойством упорядоченности (п. 6, стр. 35): для любых чисел а, b имеет место одно и только одно из трех соотношений: или . При этом запись а > b означает, что разность положительна, а запись разность отрицательна. В отличие от поля действительных чисел, поле комплексных чисел не упорядочивается: для комплексных чисел понятия «больше» и «меньше» не определяются; поэтому в данной главе рассматриваются только действительные числа.

Соотношения назовем неравенствами, числа а и b - членами (или частями) неравенства, знаки > (больше) и Неравенства а > b и с > d называются неравенствами одинакового (или одного и того же) смысла; неравенства а > b и с Из определения неравенства сразу следует, что

1) любое положительное число больше нуля;

2) любое отрицательное число меньше нуля;

3) любое положительное число больше любого отрицательного числа;

4) из двух отрицательных чисел больше то, абсолютная величина которого меньше.

Все эти утверждения допускают простое геометрическое истолкование. Пусть положительное направление числовой оси идет вправо от начальной точки; тогда, каковы бы ни были знаки чисел, большее из них изображается точкой, лежащей правее точки, изображающей меньшее число.

Неравенства обладают следующими основными свойствами.

1. Несимметричность (необратимость): если , то , и обратно.

Действительно, если разность положительна, то разность отрицательна. Говорят, что при перестановке членов неравенства надо смысл неравенства изменить на противоположный.

2. Транзитивность: если , то . Действительно, из положительности разностей следует и положительность

Кроме знаков неравенства применяют также знаки неравенства и Они определяются следующим образом: запись означает, что либо либо Поэтому, например, можно писать , а также . Обычно неравенства, записанные с помощью знаков называют строгими неравенствами, а записанные с помощью знаков нестрогими неравенствами. Соответственно и сами знаки называют знаками строгого или нестрогого неравенства. Свойства 1 и 2, рассмотренные выше, верны и для нестрогих неравенств.

Рассмотрим теперь действия, которые можно производить над одним или несколькими неравенствами.

3. От прибавления к членам неравенства одного и того же числа смысл неравенства не изменяется.

Доказательство. Пусть даны неравенство и произвольное число . По определению разность положительна. Прибавим к этому числу два противоположных числа от чего оно не изменится, т. е.

Это равенство можно переписать так:

Из этого следует, что разность положительна, т. е. что

а это и надо было доказать.

На этом основана возможность перекоса любого члена неравенства из одной его части в другую с противоположным знаком. Например, из неравенства

следует, что

4. При умножении членов неравенства на одно и то же положительное число смысл неравенства не изменяется; при умножении членов неравенства на одно и то же отрицательное число смысл неравенства изменяется на противоположный.

Доказательство. Пусть тогда Если то так как произведение положительных чисел положительно. Раскрыв скобки в левой части последнего неравенства, получим , т. е. . Аналогичным образом рассматривается случай .

Точно такой же вывод можно сделать и относительно деления частей неравенства на какое-либо отличное от нуля число, так как деление на число равносильно умножению на число а числа имеют одинаковые знаки.

5. Пусть члены неравенства положительны. Тогда при возведении его членов в одну и ту же положительную степень смысл неравенства не изменяется.

Доказательство. Пусть этом случае по свойству транзитивности и . Тогда в силу монотонного возрастания степенной функции при и положительном будем иметь

В частности, если где -натуральное число, то получим

т. е. при извлечении корня из обеих частей неравенства с положительными членами смысл неравенства не изменяется.

Пусть члены неравенства отрицательны. Тогда нетрудно доказать, что при возведении его членов в нечетную натуральную степень смысл неравенства не изменится, а при возведении в четную натуральную степень изменится на противоположный. Из неравенств с отрицательными членами можно также извлекать корень нечетной степени.

Пусть, далее, члены неравенства имеют разные знаки. Тогда при возведении его в нечетную степень смысл неравенства не изменится, а при возведении в четную степень о смысле получающегося неравенства ничего определенного в общем случае сказать нельзя. В самом деле, при возведении числа в нечетную степень знак числа сохраняется и поэтому смысл неравенства не изменяется. При возведении же неравенства в четную степень образуется неравенство с положительными членами, и его смысл будет зависеть от абсолютных величин членов исходного неравенства может получиться неравенство того же смысла, что и исходное, неравенство противоположного смысла и даже равенство!

Все сказанное о возведении неравенств в степень полезно проверить на следующем примере.

Пример 1. Возвести в указанную степень следующие неравенства, изменив в случае необходимости знак неравенства на противоположный или на знак равенства.

а) 3 > 2 в степень 4; б) в степень 3;

в) в степень 3; г) в степень 2;

д) в степень 5; е) в степень 4;

ж) 2 > -3 в степень 2; з) в степень 2,

6. От неравенства можно перейти к неравенству между если члены неравенства оба положительны или оба отрицательны, то между их обратными величинами имеется неравенство противоположного смысла:

Доказательство. Если а и b - одного знака, то их произведение положительно. Разделим на неравенство

т. е. , что и требовалось получить.

Если члены неравенства имеют противоположные знаки, то неравенство между их обратными величинами имеет тот же смысл, так как знаки обратных величин те же, что и знаки самих величин.

Пример 2. Проверить последнее свойство 6 на следующих неравенствах:

7. Логарифмирование неравенств можно производить лишь в случае, когда члены неравенств положительны (отрицательные числа и нуль логарифмов не имеют).

Пусть . Тогда при будет

а при будет

Правильность этих утверждений основана на монотонности логарифмической функции, которая возрастает, если основание и убывает при

Итак, при логарифмировании неравенства, состоящего из положительных членов, по основанию, большему единицы, образуется неравенство того же смысла, что и данное, а при логарифмировании его по положительному основанию, меньшему единицы, - неравенство противоположного смысла.

8. Если , то если , но , то .

Это сразу следует из свойств монотонности показательной функции (п. 42), которая возрастает в случае и убывает, если

При почленном сложении неравенств одного и того же смысла образуется неравенство того же смысла, что и данные.

Доказательство. Докажем это утверждение для двух неравенств, хотя оно верно для любого количества складываемых неравенств. Пусть даны неравенства

По определению числа будут положительными; тогда положительной оказывается и их сумма, т. е.

Группируя иначе слагаемые, получим

и, следовательно,

а это и надо было доказать.

Нельзя сказать Ничего определенного в общем случае о смысле неравенства, получающегося при сложении двух или нескольких неравенств разного смысла.

10. Если из одного неравенства почленно вычесть другое неравенство противоположного смысла, то образуется неравенство того же смысла, что и первое.

Доказательство. Пусть даны два неравенства разного смысла. Второе из них по свойству необратимости можно переписать так: d > с. Сложим теперь два неравенства одинакового смысла и получим неравенство

того же смысла. Из последнего находим

а это и надо было доказать.

Нельзя сказать ничего определенного в общем случае о смысле неравенства, получающегося при вычитании из одного неравенства другого неравенства того же смысла.

ЛИНЕЙНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА I

§ 10 Основные свойства числовых неравенств

1. Если а > b , то b < а , и, наоборот, если а < b , то b > а .

Доказательство. Пусть а > b . По определению это означает, что число (а - b ) положительно. Если мы перед ним поставим знак минус, то полученное число - (а - b ) будет, очевидно, отрицательным. Поэтому - (а - b ) < 0, или b - а < 0. А это (опять же по определению) и означает, что b < a .

Обратное утверждение предлагаем учащимся доказать самостоятельно.

Доказанное свойство неравенств допускает простую геометрическую интерпретацию: если точка А лежит на числовой прямой правее точки В, то точка В лежит левее точки А, и наоборот (см. рис. 20).

2. Если a > b , a b > c , то а > с .

Геометрически это свойство состоит в следующем. Пусть точка А (соответствующая числу а ) лежит правее точки В (соответствующей числу b ), а точка В, в свою очередь, лежит правее точки С (соответствующей числу с ). Тогда точка А и подавно будет лежать правее точки С (рис. 21).

Приведем алгебраическое доказательство этого свойства неравенств.

Пусть а > b , a b > с . Это означает, что числа (а - b ) и (b- с ) положительны. Сумма двух положительных чисел, очевидно, положительна. Поэтому (а - b ) + (b- с ) > 0, или а - с > 0. Но это и означает, что а > с .

3. Если а > b , то для любого числа с а + с > b + с , а - c > b - с .

Иными словами, если к обеим частям числового неравенства прибавить или от обеих частей отнять одно и то же число, то неравенство не нарушится.

Доказательство. Пусть а > b . Это означает, что а - b > 0. Но а - b = (а + с ) - (b + с ). Поэтому (а + с ) - (b + с ) > 0. А по определению это и означает, что а + с > b + с . Аналогично показывается, что а - c > b - с .

Например, если к обеим частям неравенства 5 > 4 прибавить 1 1 / 2 , то получим
6 1 / 2 > 5 1 / 2 . Отнимая от обеих частей данного неравенства число 5, получим 0 > - 1.

Следствие. Любое слагаемое одной части числового неравенства можно перенести в другую часть неравенства, поменяв знак этого слагаемого на противоположный.

Пусть, например, а + b > с . Требуется доказать, что а > с - b . Для доказательства от обеих частей данного неравенства достаточно отнять число b .

4. Пусть а > b . Если с > 0 , то аc > bc . Если же с < 0 , то ас < bс .

Иными словами, если обе части числового неравенства умножить на положительное число, то неравенство не нарушится;
если обе части неравенства умножить на отрицательное число, то знак неравенства изменится на противоположный.

Короче это свойство формулируется таким образом:

Неравенство сохраняется при почленном умножении на положительное число и изменяет знак на противоположный при почленном умножении на отрицательное число.

Например, умножив неравенство 5 > 1 почленно на 7, получим 35 > 7. Почленное умножение того же неравенства на - 7 дает - 35 < - 7.

Доказательство 4-го свойства.

Пусть а > b . Это означает, что число а - b положительно. Произведение двух положительных чисел а - b и с , очевидно, также положительно, т. е. (а - b ) с > 0, или
ас - bс > 0. Поэтому ас > bс .

Аналогично рассматривается случай, когда число с отрицательно. Произведение положительного числа а - b на отрицательное число с , очевидно, отрицательно, т. е.
(а - b) с < 0; поэтому ас - bс < 0, откуда ас < bс .

Следствие. Знак неравенства сохраняется при почленном делении на положительное число и изменяется на противоположный при почленном делении на отрицательное число.

Это вытекает из того, что деление на число с =/= 0 равносильно умножению на число 1 / c .

Упражнения

81. Можно ли неравенство 2 > 1 умножить почленно на

а) а 2 + 1; б) | а |; в) а ; г) 1 - 2а +а 2

так чтобы знак неравенства сохранился?

82. Всегда ли 5х больше 4х , а - у меньше у ?

83. Каким может быть число х , если известно, что -х > 7?

84. Расположить в порядке возрастания числа: a) а 2 , 5а 2 , 2а 2 ; б) 5а , 2а ; в) а , а 2 , а 3 . 85. Расположить в порядке убывания числа

а - b , а - 2b , а - 3b .

86. Дать геометрическую интерпретацию третьему свойству числовых неравенств.