Влияние лазерного излучения на организм человека. Положительное и негативное влияние лазерного излучения на организм человека Воздействие лазерного излучения на органы зрения

Лазерное излучение представляет собой особый вид электромагнитного излучения, генерируемого в диапазоне длин волн 0,1...1000 мкм. Лазеры широко применяются в самых различных областях человеческой деятельности благодаря таким уникальным свойствам, как высокая степень когерентности и монохроматичности излучения, малая расходимость луча, острая фокусировка излучения и возможность получения огромной плотности мощности излучения.

Лазерные системы помимо широкого научно-технического и промышленного использования имеют разнообразное применение в медицине, биологии, биотехнологии, генной инженерии и т.п.

По виду лазерное излучение подразделяют на прямое; рассеянное; зеркально-отраженное; диффузное.

Свойства лазерного излучения. Интенсивность излучения. В отличие от всех известных оптических источников излучение лазеров обладает чрезвычайно высокой интенсивностью. Мощность твердотельного оптического квантового генератора (ОКГ) может достигать 10 12 Вт. При фокусировке это излучение можно сконцентрировать в малом пятне. Плотность мощности лазерного излучения может достигать высоких значений - порядка 10 17 Вт см -2 и более. При воздействии такого излучения на вещество развиваются высокие температуры порядка 10 6 К. и выше. Естественно, что никакой тугоплавкий материал не выдержит такой плотности излучения. Время воздействия таких плотностей в случае импульсного действия гораздо меньше времени установления стационарного процесса, при этом происходит взаимодействие интенсивного излучения с веществом в локальном объеме, т.е. в области облучения, не затрагивая соседние области.

Ширина линии излучения и когерентность. Монохроматическая волна имеет строго определенную частоту колебаний:

Е = E 0 cos[(ωt - kх) + φ], (5.29)

где Е 0 - амплитуда вектора электрической напряженности поля; к - волновое число; x - координата оси распространения волны; φ - фаза (E 0 , ω, k, φ - не зависят от t).

При распространении в пространстве двух волн одинаковой частоты, но с разными фазами (φ 1 , φ 2), в любой момент времени разность фаз Δφ = (φ 1 -φ 2) будет оставаться постоянной. Две волны когерентны, если амплитуда, частота, фаза, поляризация и направление распространения этих волн остаются постоянными или изменяются по определенному закону. Идеальных монохроматических колебаний в природе не существует, так как каждый энергетический уровень имеет конечную ширину, связанную с временем жизни уровня. Из соотношения неопределенности (соотношение Гейзенберга) следует, что неопределенность значения верхнего уровня Δε при излучении связана с неопределенностью времени жизни этого уровня Δt соотношением

Длительность процесса излучения τ и естественная ширина линии излучения Δω = 2πΔν связаны выражением

(5.31)

Учитывая, что в лазере имеется оптический резонатор, в котором существуют собственные частоты (моды колебаний шириной Δν ρ), путем соответствующего выбора размеров резонатора и условий работы лазера можно получить высокую степень монохроматичности. В газовых лазерах сравнительно легко получить Δν ρ /ν 0 = 10 -10 (где v 0 - резонансная частота перехода) и даже меньше. Это выполняется в том случае, если в интервале Δν л на резонансной частоте ν 0 находится одна мода Δν м колебания резонатора (одномодовый режим). У твердотельных ОКГ монохроматичность хуже монохроматичности газовых лазеров. Высокая степень монохроматичности лазерных источников облегчает получение меньшего пятна r s при фокусировке. При этом хроматическая аберрация оптических линз практически не играет роли. Это свойство лазерных источников способствует получению значительных интенсивностей.

Лазерное излучение обладает высокой степенью временной и пространственной когерентности. Это свойство лазерного излучения способствует получению больших значений W s , так как малая расходимость лазерного потока способствует получению меньших значений r s . Понятие когерентности играет большое значение при использовании лазерного излучения в оптической локации.

Напряженность электрического поля. Лазерное излучение, обладая чрезвычайно высокой интенсивностью, позволяет получать высокие значения электрической напряженности в потоке. Эти значения сравнимы с внутриатомными полями. Максимальное значение электромагнитной связи электрона с протоном водорода Н определяется выражением

где е - заряд электрона; r 0 - радиус электронной орбиты.

При го = 10 -8 см величина Е н, = 10 9 В/см. Для других веществ это значение составляет 107...108 В/см.

Как известно, интенсивность поля (плотность мощности) связана с напряженностью электрического поля Е соотношением

где ε 0 - диэлектрическая проницаемость вакуума; с - скорость света.

При интенсивностях, например, 10 14 Вт · см -2 величина Е составляет примерно 10 8 В см -1 .

Лазерное излучение дает возможность относительно просто варьировать мощность лучевого потока, изменять направление его распространения при помощи фокусирующих линз, внешних коллиматоров, отражающих зеркал или специальных устройств.

Яркость. Свойства лазеров позволяют получить необычайно высокое значение яркости излучения. В табл. 5.10 представлены сравнительные значения яркости некоторых оптических источников, из которой видно, что яркость лазерного источника на много порядков превышает яркость Солнца и мощность искусственных источников спонтанного оптического излучения.

Таблица 5.10. Значения яркости некоторых источников

Угол расходимости пучка. Одной из важных характеристик лазерного излучения является направленность (коллимация) излучения. Важность коллимации заключается в том, что энергия, переносимая лазерным потоком, может быть собрана (сфокусирована) на малой площади.

Ограничение на угол расходимости лазерного потока накладывается дифракцией:

где θ - угол расходимости; К - числовой коэффициент порядка единицы (для однородного пучка К =1,22); λ - длина волны; d - диаметр выходной апертуры.

Классификация лазеров. Основной источник лазерного излучения - оптический квантовый генератор (лазер). Лазеры являются генераторами электромагнитных волн оптического диапазона, в которых используется вынужденное электромагнитное излучение молекул активного вещества, приводимого в возбужденное состояние источником накачки. Типы лазеров различаются видом активного вещества и способом накачки.

В твердотельных лазерах в качестве активного вещества используются кристаллы рубина, иттриево-алюминиевый гранат (АИГ) или стекло, активированное неодимом (Nd) или эрбием. Для возбуждения активного вещества применяют импульсные ксеноновые лампы. В режиме свободной генерации твердотельные лазеры генерируют импульсы длительностью 0,1-1 мс, с энергией десятки джоулей и мощностью в импульсе десятки или сотни киловатт (10 9 ...10 10 Вт). Угол расходимости луча в твердотельных лазерах составляет 20...30°.

В газовых лазерах активным веществом является газ или смесь газов, которые приводятся в возбужденное состояние газовым разрядом. Газовые лазеры характеризуются малым углом расхождения луча - всего 1...3°. Наибольшее распространение получили лазеры на смеси гелия (Не) и неона (Ne) с длиной волны генерации 0,63 мкм и лазеры на углекислом газе (СО 2) с длиной волны 10,6 мкм. Мощность гелий-неоновых лазеров невелика и составляет десятки или сотни милливатт. Лазеры на углекислом газе характеризуются большой мощностью - сотни ватт в непрерывном режиме и высоким КПД - 20...30%.

В полупроводниковых лазерах активным веществом является полупроводниковый кристалл. Возбуждение лазера осуществляется электрическим током, проходящим через кристалл. Максимальная мощность составляет около 100 Вт в импульсном режиме и несколько ватт - в непрерывном. Обладает углом расходимости луча в несколько градусов.

В жидкостных лазерах в качестве активного вещества используют обычно органические красители. Возбуждение активного вещества осуществляется или когерентным излучением другого лазера, или некогерентным излучением импульсных ламп. В жидкостных лазерах при соответствующем выборе активного вещества можно получить когерентное излучение с длинами волн от 0,34 до 11,75 мкм. Энергия излучения в импульсе составляет до 10 Дж.

Воздействие лазерного излучения на человека, живой организм, живую клетку многолико и противоречиво.

В настоящее время лазерное излучение используется и как хирургический нож для удаления злокачественных опухолей и других образований, и как тонкий инструмент в микрохирургии глаза, и как целительный луч для лечения самых разнообразных заболеваний сердца, печени, вегетативно-сосудистой системы, пищеварительного тракта и т.д.

С другой стороны, лазерное излучение представляет определенную опасность при неосторожном и неумелом его использовании. Даже работа с маломощным лазером представляет опасность, прежде всего для глаз.

Биологическое действие лазерного излучения зависит от длины волны и интенсивности излучения, поэтому весь диапазон длин волн делится на области: ультрафиолетовая (0,2...0,4 мкм); видимая (0,4...0,5 мкм); инфракрасная - ближняя (0,75...1) и дальняя (свыше 1,0).

По степени опасности лазерного излучения для организма человека все лазерные установки подразделяются на четыре класса. К классу I относятся лазеры, излучение которых не представляет опасности для кожи и глаз человека, к классу II - излучение которых представляет опасность для глаз или кожи при облучении прямым или зеркально отраженным излучением.

Излучение лазеров класса III представляет опасность для глаз и кожи при облучении прямым или зеркально отраженным излучением и опасность для глаз при облучении диффузно отраженным излучением на расстоянии 10 см от отражающей поверхности.

К классу IV относятся лазеры, излучение которых представляет опасность для кожи и глаз при облучении диффузно отраженным излучением на расстоянии 10 см от отражающей поверхности.

Деление лазеров на классы позволяет определить мероприятия по обеспечению безопасности при работе с лазерами различных типов.

Лазеры (Light Amplification by Stimulated Emission of Radiation) применяются в медицине с конца 1960-х гг. Они генерируют электромагнитное излучение оптического диапазона, характеризующееся монохроматичностью, когерентностью, строгой направленностью и высокой интенсивностью излучаемой энергии.

Лазерные установки в настоящее время широко используются в промышленности, в нанотехнологиях для пайки микроэлементов, прожигания отверстий в сверхтвердых материалах, резки и при обработке кристаллов, а также в химии, геодезии, спектроскопии. Благодаря своей способности воздействовать на биологические ткани, лазерное излучение нашло широкое применение в медицине: лазерная хирургия (С02-лазеры - полостные и кожно-пластические операции, оперативная урология и гинекология, лечение гнойных ран и ожогов; лазерная эндоскопия (АИГ-неодимовые лазеры) - лазерная фотокоагуляция и лазерная фотодеструкция; лазерная физиофототерапия (низкоинтенсивные лазеры - гелий-неоновые, инфракрасные).

Патогенез

Энергия лазерного излучения трансформируется в биологических тканях в тепловую, может излучаться с другой длиной волны - флюоресценция, потенцировать фотохимические процессы, возбуждать электронные переходы, что кроме лечебного может иметь и повреждающее действие, в том числе и на организм работающих с хирургическими и терапевтическими лазерными установками. Помимо конкретных характеристик лазерного луча - длины волны, степени когерентности, поляризации, плотности, мощности и интенсивности действующей энергии, которые должны быть отражены в санитарно-гигиенической характеристике, - патологическое действие лазерного излучения на человека зависит от специфических свойств структур, на которые действует луч. Максимум поглощения энергии отмечается пигментированными клетками и тканями. Отсюда наиболее очевидной является возможность локального поражения глаз и кожи, а также системное воздействие на нервную систему - вегетативно-сосудистая дистония, астенический, астено- вегетативный и гипоталамический синдром.

Развитию профессиональной патологии у работающих с лазерами, наряду с прямым действием луча, способствуют:

■ диффузно-отраженное и рассеянное лазерное излучение;

■ недостаточная освещенность объектов воздействия, микроманипуляционные технологии, требующие повышенной нагрузки на зрение;

■ стабильный и импульсный шум, сопровождающий работу лазерных установок;

■ значительное нервно-эмоциональное напряжение, связанное с большой ответственностью при работе с лазерным оборудованием.

Клиническая картина

Сетчатка является наиболее поражаемой частью глаза из-за фокусирующих свойств собственной оптической системы. Лазерный луч, входя в глаз, может сфокусироваться роговицей и хрусталиком на малой площади сетчатки так, что плотность мощности в фокальном пятне окажется намного выше, чем плотность мощности падающего излучения. Поэтому сетчатка может быть поражена при уровнях мощности лазерного пучка, не представляющих опасности для других частей тела. Опасная для сетчатки глаза плотность мощности может быть получена и в диффузно рассеянном лазерном свете при соответствующей мощности лазера. По стандарту Американского национального института стандартов опасным для человека считается воздействие на глаз лазерного луча диаметром 7 мм и плотностью мощности 2 мВт/см2 в течение 1 с и 9 мВт/см2 - в течение 10-2 с.

Поражения глаз лазерной радиацией не имеют специфических проявлений и обычно имитируют другие формы патологии. Ожоги хрусталика могут вызывать катаракты, сходные по своим проявлениям с врожденными или возрастными, ожоги радужки имитируют меланомы, помутнения роговицы неотличимы от помутнений другой этиологии.

В условиях производства большое значение имеет биологическое действие отраженного лазерного излучения, которое зависит от его параметров и свойств. Излучения видимого и ближнего ИК-диапазонов воспринимаются не только сетчатой оболочкой глаза, но и клетками пигментного эпителия, сосудами глазного дна. При дальнем ИК-излучении прежде всего реагируют роговица и кожа. СО2-лазер (длина волны 10,6 мкм) меняет регионарную и системную гемодинамику (что можно предотвратить введением антиоксидантов). Гелий-неоновый лазер не только действует на фоторецепторы сетчатой оболочки глаза, но и на пигментный эпителий, меняя кровенаполнение сосудов глаза.

В легких случаях поражения глаз обычно развиваются преходящие функциональные расстройства - нарушения темновой адаптации, изменения чувствительности роговицы, преходящая слепота. При более тяжелых заболеваниях глаз возникает скотома (выпадение части поля зрения) без каких-либо болевых ощущений. Иногда пострадавшие лишь отмечают ощущение толчка, удара в глаз. На глазном дне при этом обнаруживаются различной степени ожог и отек сетчатки, кровоизлияния в нее и стекловидное тело с последующим формированием рубца и снижением остроты зрения. Описанная картина характерна для действия лазерного излучения с длиной волны в видимой или ближней инфракрасной части спектра.

Излучение в ультрафиолетовой и дальней инфракрасной части спектра в основном поглощается поверхностными элементами оптической системы глаза. Могут развиваться очень болезненные ожоги роговицы, а при воздействии газовых лазеров, работающих на углекислом газе с длиной волны 1060 нм - преходящие очаги помутнений в роговице глаза, обусловленные денатурацией белков.

При длительном воздействии диффузно-рассеянного лазерного излучения также могут развиваться различные функциональные и органические изменения органа зрения - появление тупых болей и утомляемости глаз к концу рабочего дня, ощущение жжения, непереносимости яркого света, слезотечение или сухость в глазах. Может отмечаться повышение порогов цветоразличения, увеличение времени темновой адаптации, сужение полей зрения. При обследовании со щелевой лампой выявляются единичные и множественные помутнения в различных слоях хрусталика (преждевременное его старение) с последующим развитием катаракты. У работников с большим стажем могут развиваться явления центральной дегенерации сетчатки - появление мелких очажков в макулярной и парамакулярной областях.

Последствия взаимодействия лазерного излучения с кожей зависят от длины волны и степени пигментации кожи. В видимой области отражающая способность кожи достаточно высокая. В ИК-области кожа начинает сильно поглощать излучение почти независимо от пигментации. Наиболее опасны в этом плане С02-лазеры (как и для роговицы глаза). Поражение кожи прямым или отраженным излучением носит разнообразный характер и строго зависит от его параметров: от легкой эритемы в месте облучения до ожогов, напоминающих электрокоагуляционные, и полного разрушения и разрывов кожных покровов. Однако даже при длительном хроническом воздействии низкоинтенсивных рассеянных лазерных излучений не вызывает какой-либо специфической дерматологической патологии.

При длительном воздействии лазерного излучения на человека в процессе его профессиональной деятельности и срыве компенсаторно-приспособительных реакций могут также развиваться патологические изменения со стороны нервной и сердечнососудистой систем, относящиеся к профессиональным заболеваниям. Чаще всего - это астенический, астеновегетативный синдромы и вегетативно-сосудистая дистония. Работники при контакте с лазерным излучением жалуются на общую слабость, повышенную утомляемость, вялость, появляющиеся сначала к концу рабочего дня, а затем постоянно. Отмечаются повышенная раздражительность, гиперчувствительность к свету, слезливость, бессонница, головная боль, реже - головокружения, колющие боли в области сердца. Объективно обнаруживается оживление сухожильных рефлексов, тремор рук, век, угнетение или усиление местного красного дермографизма, гипергидроз. При исследования электроэнцефалограммы - преимущественно гиперсинхронный тип электроэнцефалограммы. Со стороны сердечнососудистой системы определяются неустойчивость пульса и артериального давления, аритмии. Аускультативно выслушиваются глухие сердечные тоны, функциональный систолический шум над верхушкой сердца. ЭКГ регистрирует усиление экстракардиальных вегетативных воздействий на сердце (синусовые аритмии и брадиаритмии, высокие зубцы Т в грудных отведениях). В крови - небольшой эрит- роцитоз, реже ретикулоцитоз, снижение уровней гемоглобина и ЦП, небольшой лейкоцитоз, тромбоцитопения.

Гораздо реже при длительном воздействии лазерного излучения может развиваться гипоталамический синдром, который характеризуется перестройкой нервно-гуморальных регуляторных механизмов с клиническими проявлениями поражения центрального и периферического звеньев гипоталамо-гипофизарно-адреналовой, гипота- ламо-гипофизарно-тиреоидной, гипоталамо-гипофизарно-гонадной систем.

Профилактика неблагоприятного воздействия лазерного излучения на персонал строится в соответствии с классом используемых лазеров. Большое внимание следует уделять устранению возможных источников отражения лазерного излучения или рассеивания. Все приспособления для юстировки лазерного луча должны иметь защитные фильтры с полосой поглощения, совпадающей с длиной волны генератора. К мерам медицинской профилактики патологического воздействия лазерного излучения относятся лечебно-оздоровительные мероприятия: лечебная физкультура, прием витаминов (комплексные поливитамины по 1 табл./ сут. в течение 1-2 месяцев или витамины В и С). Кроме того, рекомендуются адаптогены - элеутерококк (по 1 чайной ложке 1 раз / сут. в течение месяца, через три месяца можно повторить курс), а также препараты расторопши, золотого корня. Медицинскими противопоказаниями для приема на работу с лазерными установками служат хронические заболевания кожи, понижение остроты зрения ниже 0,6 на одном глазу и ниже

0. 5.на другом (острота зрения определяется с коррекцией), наркомании, токсикомании, в том числе хронический алкоголизм, шизофрения и другие эндогенные психозы.

Экспертиза трудоспособности

При органической прогрессирующей патологии глаз, связанной с воздействием лазерного излучения, а также нервной системы (ас- теноорганический синдром) больные нуждаются в постоянном трудоустройстве, исключающем воздействие лучистой энергии и других неблагоприятных производственных факторов. При функциональных изменениях нервной, сердечно-сосудистой систем - временный перевод на работу, не связанную с воздействием вредных профессиональных факторов.

♦ ВОПРОСЫ И ЗАДАНИЯ

1. Назовите, на каких производствах и в отраслях промышленности работающие подвергаются воздействию электромагнитных полей радиочастот и лазерного излучения.

2. Опишите клинику заболевания, вызванного воздействием радиоволн и лазерного излучения. Какие поражения, вызываемые электромагнитным и лазерным излучением, являются необратимыми?

3. Назовите основные принципы профилактики воздействия неионизирующих излучений на организм работающих.

4. Назовите общие медицинские противопоказания для приема на работу в контакте с неионизирующими излучениями, согласно приказу № 90 МЗ РФ.

Использование лазерных приборов связано с определенной опасностью для человека. В данной работе будут рассмотрены только особенности практического применения лазерных приборов и способы защиты, связанные с возможностью поражения глаз и кожных покровов человека. При этом основополагающими нормативными документами являются: 825-я публикация Международной технической комиссии (МЭК) под названием "Радиационная безопас-ность лазерных изделий, классификация оборудования, требования и руководство для потребителей" как наиболее компетентная рекомендация мирового класса; новейшая отечественная разработка СНиП; ГОС

Непосредственно на человека оказывает лазерное излучение любой длины волны; однако в связи со спектральными особенностями поражения органов и существенно различными предельно допустимыми дозами облучения обычно различают воздействие на глаза и кожные покровы человека.

Можно выделить два направления применения лазеров и отрасли. Первое направление связано с целенаправленным воздействием на обрабатываемое вещество (микросварка, термообработка, резка хрупких и твердых материалов, подгонка параметров микросхем и др.), второе направление -медицина - находит все большее развитие.

Диапазон длин волн, излучаемых лазерами, охватывает видимый спектр и распространяется в инфракрасную и ультрафиолетовую области. Для каждого режима работы лазера и спектрального диапазона рекомендуются соответствующие предельно допустимые уровни (ПДУ) для энергии (W) и мощности (P) излучения, прошедшего ограничивающую апертуру d = 7 мм. Для видимого диапазона или d = 1.1 мм, для остальных, энергетической экспозиции (H) и облученности (E), усредненных по ограничивающей апертуре: H = W / Sa , E = P / Sa ,где Sa - ограничивающая апертура.

Хронические ПДУ в 5 - 10 раз ниже ПДУ однократного воздейс-твия. При одновременном воздействии ЛИ разного диапазона их действие суммируется с умножением на соответствующий энерговклад.

Лазерное излучение характеризуется некоторыми особеннос-тями:

1 - широкий спектральный (&=0.2..1 мкм) и динамический (120..200 дБ);

2 - малая длительность импульсов (до 0.1 нс.);

3 - высокая плотность мощности (до 1e+9 Вт/см^2) энергии;

4 - Измерение энергетических параметров и характеристик лазерного излучения

Виды действия лазерного излучения

Наиболее опасно лазерное излучение с длиной волны:

  • 380¸1400 нм - для сетчатки глаза,
  • 180¸380 нм и свыше 1400 нм - для передних сред глаза,
  • 180¸105 нм (т.е. во всем рассматриваемом диапазоне) - для кожи.

Основную опасность при эксплуатации лазера представляет прямое лазерное излучение.

Степень потенциальной опасности лазерного излучения зависит от мощности источника, длины волны, длительности импульса и чистоты его следования, окружающих условий, отражения и рассеяния излучения.

Биологические эффекты, возникающие при воздействии лазерного излучения на организм человека, делятся на две группы:

  • Первичные эффекты - органические изменения, возникающие непосредственно в облучаемых тканях;
  • Вторичные эффекты - неспецифические изменения, появляющиеся в организме в ответ на облучение.
  • Наиболее подвержен поражению лазерным излучениям глаз человека. Сфокусированный на сетчатке хрусталиком глаза лазерный луч будет иметь вид малого пятна с еще более плотной концентрацией энергии, чем падающее на глаз излучение. Поэтому попадание лазерного излучения в глаз опасно и может вызвать повреждение сетчатой и сосудистой оболочек с нарушением зрения. При малых плотностях энергии происходит кровоизлияние, а при больших - ожег, разрыв сетчатой оболочки, появление пузырьков глаза в стекловидном теле.
  • Лазерное излучение может вызвать также повреждение кожи и внутренних органов человека. Повреждение кожи лазерным излучением схоже с термическим ожогом. На степень повреждения влияют как входные характеристики лазеров, так и цвет, и степень пигментации кожи. Интенсивность излучения, которая вызывает повреждение кожи, намного выше интенсивности, приводящей к повреждению глаза.

Обеспечение лазерной безопасности

Методы и средства защиты от воздействия лазерного излучения можно подразделить на организационные, инженерно-технические и средства индивидуальной защиты. Надежной защитой от случайного попадания на человека является экранирование луча световодом на всем пути его действия. В качестве средств индивидуальной защиты применяются специальные защитные очки, стекла в которых подбираются в соответствии с ГОСТ 9411-81Е; технологические халаты и перчатки, изготавливаемые из хлопчатобумажной ткани светло-зеленого или голубого цвета.

В презентации к работе представлены показатели допустимых уровней лазерного излучения, а также иллюстрационный материал по видам отрицательного воздействия лазерного излучения на организм человека и способам защиты.

Свойства лазерного излучения позволяют применять его в разных сферах жизни человека. В медицине и косметологии лазером лечат большое количество заболеваний и эстетических недостатков.

С помощью скальпеля лазерного типа врач создает бескровные разрезы, что обеспечивается моментальным спаиванием капилляров и кровеносных сосудов. Кроме того, пользуясь подобным инструментарием у специалиста есть возможность видеть всю рабочую зону. Лазерный пучок рассекает кожный покров удаленно, не имея прямого контакта с сосудами и органами.

При этом достигается стерильность. Высокая концентрация лазера дает возможность производить хирургические вмешательства с минимальными показателями травматизации. Больные после таких операций намного быстрее восстанавливаются, то есть трудоспособность возвращается намного быстрее. Кроме того, манипуляции лазерным скальпелем не приносят никакого дискомфорта после операции.

Активное технологическое развитие существенно расширилось возможности использования лазерного излучения. Ученые выявили положительное воздействие и на состояние кожного покрова. По этой причине лазер сегодня часто используют в дерматологии и косметологии.

Реакция и степень поглощения лучей кожным покровом зависят от его типа. Лазерные приборы позволяют регулировать длину волы для каждой отдельной ситуации. Применение:

Одной из самых первых отраслей, где начал активно применяться лазер, является офтальмология. Глазная микрохирургия выделяет следующие направления, при которых используется этот вид облучения:

Помимо всего прочего, лазер применяется и при онкологических патологиях кожного покрова. Очень хорошие результаты он демонстрирует при устранении меланобластомы. В некоторых случаях лазерная технология применяется для терапии рака ЖКТ начальных стадий. Однако лазер не эффективен при наличии метастаз и глубокой локализации злокачественного образования.

Опасность для организма

Негативное влияние лазерного излучения на организм человека уже давным-давно доказано. Облучение бывает отраженным, рассеянным и прямым. Пагубное влияние обусловлено термическими и световыми свойствами лазера. Интенсивность поражения определяется уровнем поглощения тканей, длиной волны и участком, на который направлено воздействие.

Больше остальных частей тела от лазера могут пострадать глазные яблоки. Роговица крайне чувствительна, потому она запросто получает ожоги. Из последствий можно выделить резкое снижение зрительной функции или абсолютную слепоту. Источниками излучения, как правило, являются инфракрасные лазерные излучатели. При поражении хрусталика, роговицы, сетчатки или радужки лазерным лучом могут наблюдаться следующие признаки:

  • спазмы и боли в глазном яблоке;
  • помутнение глазного хрусталика;
  • кровоизлияния и отечность век.

Уязвима и человеческая кожа. В месте ее контакта с лазерным лучом увеличивается температура. Межтканевая и внутриклеточная жидкости начинают быстро закипать и испаряться. На кожном покрове появляется краснота. Через некоторое время на обожженном участке могут возникнуть омертвевшие участки. При мощном воздействии кожа обугливается практически мгновенно. Самый главный признак ожога лазером - строгие контуры поражения, а пузырьки формируются не под эпидермисом, а в нем.

Инфракрасный лазер способен поразить не только кожный покров, но и внутренние органы, так как проникает через ткани. Для глубокого ожога характерна очередность поврежденной и здоровой ткани. В первое время после пагубного воздействия у человека нет никакого дискомфорта и боли. Самым уязвимым внутренним органом считается печень.

Кроме того, влияние лазера на организм человека вызывает расстройства ССС и ЦНС (сердечно-сосудистой и центральной нервной системы соответственно). У пострадавшего при этом могут наблюдаться обильная потливость, замедление сердечного ритма, скачки давления и чувство раздражительности.

Меры защиты и предосторожности

В группу риска входят люди, работа которых предполагает использование квантовых генераторов. Санитарные нормативы разделяют опасность лазерного излучения на четыре класса. Для человеческого организма могут представлять опасность все классы, кроме первого. К техническим вариантам защиты относятся:

  • грамотное обустройство помещений промышленного назначения и правильный выбор внутренней облицовки (лазер не должен отражаться от поверхностей);
  • рациональная установка приборов-излучателей;
  • ограждение участка, который подвергается облучению;
  • соблюдение требований по эксплуатации и обслуживанию лазерных установок.

Другие меры защиты - индивидуальные. Она предполагает применение защитных очков, спецодежды, экранов, кожухов, призм и линз.

Бытовое применение лазера тоже может представлять опасность для человеческого организма. Несоблюдение инструкции может привести к очень печальным последствиям. Защита в этом случае предполагает следующие рекомендации:

Лазер может иметь механическое, фотохимическое, энергетическое или тепловое воздействие. Это зависит от типа используемого излучателя. Самым опасным считается прямое лазерное излучение, так как он имеет максимальную интенсивность. Думая о том, вреден ли лазер для здоровья, следует запомнить, что нерациональное использование самодельных лазерных устройств, фонариков или световых указов может причинить вред не только владельцу, но и окружающим.

1. Прохождение монохроматического света через прозрачную среду.

2. Создание инверсной населенности. Способы накачки.

3. Принцип действия лазера. Типы лазеров.

4. Особенности лазерного излучения.

5. Характеристики лазерного излучения, применяемого в медицине.

6. Изменения свойств ткани и ее температуры под действием непрерывного мощного лазерного излучения.

7. Использование лазерного излучения в медицине.

8. Основные понятия и формулы.

9. Задачи.

Мы знаем, что свет испускается отдельными порциями - фотонами, каждый из которых возникает в результате излучательного перехода атома, молекулы или иона. Естественный свет - это совокупность огромного числа таких фотонов, различающихся по частоте и фазе, испущенных в случайные моменты времени в случайных направлениях. Получение мощных пучков монохроматического света с помощью естественных источников - задача практически неразрешимая. В то же время потребность в таких пучках ощущалась как физиками, так и специалистами многих прикладных наук. Создание лазера позволило решить эту задачу.

Лазер - устройство, генерирующее когерентные электромагнитные волны за счет вынужденного излучения микрочастиц среды, в которой создана высокая степень возбуждения одного из энергетических уровней.

Лазер (LASER Light Amplification by Stimulated of Emission Radiation) - усиление света с помощью вынужденного излучения.

Интенсивность лазерного излучения (ЛИ) во много раз превосходит интенсивность естественных источников света, а расходимость лазерного луча менее одной угловой минуты (10 -4 рад).

31.1. Прохождение монохроматического света через прозрачную среду

В лекции 27 мы выяснили, что прохождение света через вещество сопровождается как фотонным возбуждением его частиц, так и актами вынужденного излучения. Рассмотрим динамику этих процессов. Пусть в среде распространяется монохроматический свет, частота которого (ν) соответствует переходу частиц этой среды с основного уровня (E 1) на возбужденный (Е 2):

Фотоны, попадающие в частицы, находящиеся в основном состоянии, будут поглощаться, а сами частицы будут переходить в возбужденное состояние Е 2 (см. рис. 27.4). Фотоны, которые попадают в возбужденные частицы, инициируют вынужденное излучение (см. рис. 27.5). При этом происходит удвоение фотонов.

В состоянии теплового равновесия соотношение между числом возбужденных (N 2) и невозбужденных (N 1) частиц подчиняется распределению Больцмана:

где k - постоянная Больцмана, T - абсолютная температура.

При этом N 1 >N 2 и поглощение доминирует над удвоением. Следовательно, интенсивность выходящего света I будет меньше интенсивности падающего света I 0 (рис. 31.1).

Рис. 31.1. Ослабление света, проходящего через среду, в которой степень возбуждения менее 50 % (N 1 > N 2)

По мере поглощения света степень возбуждения будет расти. Когда она достигнет 50 % (N 1 = N 2), между поглощением и удвоением установится равновесие, так как вероятности попадания фотонов в возбужденную и невозбужденную частицы станут одинаковыми. Если освещение среды прекратится, то через некоторое время среда вернется в начальное состояние, соответствующее распределению Больцмана (N 1 > N 2). Сделаем предварительный вывод:

При освещении среды монохроматическим светом (31.1) невозможно добиться такого состояния среды, при котором степень возбуждения превышает 50 %. И все-таки давайте рассмотрим вопрос о прохождении света через среду, в которой каким-то способом достигнуто состояние N 2 > N 1 . Такое состояние называется состоянием с инверсной населенностью (от лат. inversio - переворачивание).

Инверсная населенность - такое состояние среды, при котором число частиц на одном из верхних уровней больше, чем на нижнем.

В среде с инверсной населенностью вероятность попадания фотона в возбужденную частицу больше, чем в невозбужденную. Поэтому процесс удвоения доминирует над процессом поглощения и имеет место усиление света (рис. 31.2).

По мере прохождения света через среду с инверсной населенностью степень возбуждения будет снижаться. Когда она достигнет 50%

Рис. 31.2. Усиление света, проходящего через среду с инверсной населенностью (N 2 > N 1)

(N 1 = N 2), между поглощением и удвоением установится равновесие и эффект усиления света исчезнет. Если освещение среды прекратится, то через некоторое время среда вернется в состояние, соответствующее распределению Больцмана (N 1 > N 2).

Если вся эта энергия выделится в излучательных переходах, то мы получим световой импульс огромной мощности. Правда, он еще не будет обладать требуемой когерентностью и направленностью, но будет в высокой степени монохроматичен (hv = E 2 - E 1). Это еще не лазер, но уже нечто близкое.

31.2. Создание инверсной населенности. Способы накачки

Так можно ли добиться инверсной населенности? Оказывается, можно, если использовать три энергетических уровня со следующей конфигурацией (рис. 31.3).

Пусть среда освещается мощной вспышкой света. Часть спектра излучения будет поглощена в переходе с основного уровня Е 1 на широкий уровень Е 3 . Напомним, что широким является энергетический уровень с малым временем релаксации. Поэтому большинство частиц, попавших на уровень возбуждения Е 3 , безызлучательно переходит на узкий метастабильный уровень Е 2 , где происходит их накопление. Вследствие узости этого уровня лишь малая доля фотонов вспышки

Рис. 31.3. Создание инверсной населенности на метастабильном уровне

способна вызвать вынужденный переход Е 2 → Е 1 . Этим и обеспечиваются условия для создания инверсной населенности.

Процесс создания инверсной населенности называется накачкой. В современных лазерах применяются различные виды накачки.

Оптическая накачка прозрачных активных сред использует импульсы света от внешнего источника.

Электроразрядная накачка газовых активных сред использует электрический разряд.

Инжекционная накачка полупроводниковых активных сред использует электрический ток.

Химическая накачка активной среды из смеси газов использует энергию химической реакции между компонентами смеси.

31.3. Принцип действия лазера. Типы лазеров

Функциональная схема лазера показана на рис. 31.4. Рабочее тело (активная среда) представляет собой длинный узкий цилиндр, торцы которого закрыты двумя зеркалами. Одно из зеркал (1) полупрозрачно. Такая система называется оптическим резонатором.

Система накачки переводит частицы с основного уровня Е 1 на поглощательный уровень Е 3 , откуда они безызлучательно переходят на метастабильный уровень Е 2 , создавая его инверсную населенность. После этого начинаются спонтанные излучательные переходы Е 2 → Е 1 с испусканием монохроматических фотонов:

Рис. 31.4. Схематическое устройство лазера

Фотоны спонтанного излучения, испущенные под углом к оси резонатора, выходят через боковую поверхность и в процессе генерации не участвуют. Их поток быстро иссякает.

Фотоны, которые после спонтанного излучения движутся вдоль оси резонатора, многократно проходят через рабочее тело, отражаясь от зеркал. При этом они взаимодействуют с возбужденными частицами, инициируя вынужденное излучение. За счет этого происходит «лавинообразное» нарастание индуцированных фотонов, движущихся в том же направлении. Многократно усиленный поток фотонов выходит через полупрозрачное зеркало, создавая мощный пучок почти параллельных когерентных лучей. Фактически лазерное излучение порождается первым спонтанным фотоном, который движется вдоль оси резонатора. Это и обеспечивает когерентность излучения.

Таким образом, лазер преобразует энергию источника накачки в энергию монохроматического когерентного света. Эффективность такого преобразования, т.е. КПД, зависит от типа лазера и лежит в диапазоне от долей процента до нескольких десятков процентов. У большинства лазеров КПД составляет 0,1-1 %.

Типы лазеров

Первый созданный лазер (1960 г.) использовал в качестве рабочего тела рубин и оптическую систему накачки. Рубин - это кристаллическая окись алюминия А1 2 О 3 , содержащая около 0,05 % атомов хрома (именно хром придает рубину розовый цвет). Атомы хрома, внедренные в кристаллическую решетку, являются активной средой

с конфигурацией энергетических уровней, изображенной на рис. 31.3. Длина волны излучения рубинового лазера равна λ = 694,3 нм. Затем появились лазеры, использующие другие активные среды.

В зависимости от типа рабочего тела лазеры делятся на газовые, твердотельные, жидкостные, полупроводниковые. В твердотельных лазерах активный элемент обычно изготавливается в виде цилиндра, длина которого много больше его диаметра. Газовые и жидкие активные среды помещают в цилиндрическую кювету.

В зависимости от способа накачки можно получить непрерывную и импульсную генерацию лазерного излучения. При непрерывной системе накачки инверсия населенности поддерживается длительное время за счет внешнего источника энергии. Например, непрерывное возбуждение электрическим разрядом в газовой среде. При импульсной системе накачки инверсия населенности создается в импульсном режиме. Частота следования импульсов от 10 -3

Гц до 10 3 Гц.

31.4. Особенности лазерного излучения

Лазерное излучение по своим свойствам значительно отличается от излучения обычных источников света. Отметим его характерные особенности.

1. Когерентность. Излучение является высококогерентным, что обусловлено свойствами вынужденного излучения. При этом имеет место не только временная, но и пространственная когерентность: разность фаз в двух точках плоскости, перпендикулярной направлению распространения, сохраняется постоянной (рис. 31.5, а).

2. Коллимированность. Лазерное излучение является коллимированным, т.е. все лучи в пучке почти параллельны друг другу (рис. 31.5, б). На большом расстоянии лазерный пучок лишь незначительно увеличивается в диаметре. Так как угол расходимости φ мал, то интенсивность лазерного пучка слабо убывает с расстоянием. Это позволяет передавать сигналы на огромные расстояния при малом ослаблении их интенсивности.

3. Монохроматичность. Лазерное излучение является в высокой степени монохроматическим, т.е. содержит волны практически одинаковой частоты (ширина спектральной линии составляет Δλ ≈0,01 нм). На

рисунке 31.5, в приведено схематическое сравнение ширины линии лазерного луча и луча обычного света.

Рис. 31.5. Когерентность (а), коллимированность (б), монохроматичность (в) лазерного излучения

До появления лазеров излучение с некоторой степенью монохроматичности удавалось получить с помощью приборов - монохроматоров, выделяющих из сплошного спектра узкие спектральные интервалы (узкие полосы длин волн), однако мощность света в таких полосах мала.

4. Высокая мощность. С помощью лазера можно обеспечить очень высокую мощность монохроматического излучения - до 10 5 Вт в непрерывном режиме. Мощность импульсных лазеров на несколько порядков выше. Так, неодимовый лазер генерирует импульс с энергией Е = 75 Дж, длительность которого t = 3х10 -12 с. Мощность в импульсе равна Р = Е/t = 2,5х10 13 Вт (для сравнения: мощность ГЭС составляет Р ~10 9 Вт).

5. Высокая интенсивность. В импульсных лазерах интенсивность лазерного излучения очень высока и может достигать I = 10 14 -10 16 Вт/см 2 (ср. интенсивность солнечного света вблизи земной поверхности I = 0,1 Вт/см 2).

6. Высокая яркость. У лазеров, работающих в видимом диапазоне, яркость лазерного излучения (сила света с единицы поверхности) очень велика. Даже самые слабые лазеры имеют яркость 10 15 кд/м 2 (для сравнения: яркость Солнца L ~ 10 9 кд/м 2).

7. Давление. При падении лазерного луча на поверхность тела создается давление (Д). При полном поглощении лазерного излучения, падающего перпендикулярно поверхности, создается давление Д = I/c, где I -интенсивность излучения, с - скорость света в вакууме. При полном отражении величина давления в два раза больше. Для интенсивности I = 10 14 Вт/см 2 = 10 18 Вт/м 2 ; Д = 3,3х10 9 Па = 33 000 атм.

8. Поляризованность. Лазерное излучение полностью поляризовано.

31.5. Характеристики лазерного излучения, применяемого в медицине

Длина волны излучения

Длины волн излучения (λ) медицинских лазеров лежат в диапазоне 0,2 -10 мкм, т.е. от ультрафиолетовой до дальней инфракрасной области.

Мощность излучения

Мощность излучения (P) медицинских лазеров варьируется в широких пределах, определяемых целями применения. У лазеров с непрерывной накачкой Р = 0,01-100 Вт. Импульсные лазеры характеризуются мощностью в импульсе Р и и длительностью импульса τ и

Для хирургических лазеров Р и = 10 3 -10 8 Вт, а длительность импульса т и = 10 -9 -10 -3 с.

Энергия в импульсе излучения

Энергия одного импульса лазерного излучения (Е и) определяется соотношением Е и = Р и -т и, где т и - длительность импульса излучения (обычно т и = 10 -9 -10 -3 с). Для хирургических лазеров Е и = 0,1-10 Дж.

Частота следования импульсов

Эта характеристика (f) импульсных лазеров показывает количество импульсов излучения, генерируемых лазером за 1 с. Для терапевтических лазеров f = 10-3 000 Гц, для хирургических f = 1-100 Гц.

Средняя мощность излучения

Эта характеристика (Р ср) импульсно-периодических лазеров показывает, какую энергию лазер излучает за 1 с, и определяется следующим соотношением:

Интенсивность (плотность мощности)

Эта характеристика (I) определяется как отношение мощности лазерного излучения к площади поперечного сечения пучка. Для непрерывных лазеров I = P/S. В случае импульсных лазеров различают интенсивность в импульсе I и = P и /S и среднюю интенсивность I ср = Р ср /S.

Интенсивность хирургических лазеров и давление, создаваемое их излучением, имеют следующие значения:

для непрерывных лазеров I ~ 10 3 Вт/см 2 , Д = 0,033 Па;

для импульсных лазеров I и ~ 10 5 -10 11 Вт/см 2 , Д = 3,3 - 3,3х10 6 Па.

Плотность энергии в импульсе

Эта величина (W) характеризует энергию, которая приходится на единицу площади облучаемой поверхности за один импульс и определяется соотношением W = E и /S, где S (см 2) - площадь светового пятна (т.е. поперечного сечения лазерного луча) на поверхности биоткани. У лазеров, используемых в хирургии, W ≈ 100 Дж/см 2 .

Параметр W можно рассматривать как дозу облучения D за 1 импульс.

31.6. Изменения свойств ткани и ее температуры под действием непрерывного мощного лазерного излучения

Изменение температуры и свойств ткани

под действием непрерывного лазерного излучения

Поглощение мощного лазерного излучения биологической тканью сопровождается выделением теплоты. Для расчета выделяющейся теплоты используют специальную величину - объемную плотность теплоты (q).

Выделение теплоты сопровождается повышением температуры и в тканях протекают следующие процессы:

при 40-60°С имеют место активация ферментов, образование отеков, изменение и в зависимости от времени действия гибель клеток денатурация протеина, начало коагуляции и некрозы;

при 60-80°С - денатурация коллагена, дефекты мембран; при 100°С - обезвоживание, выпаривание тканевой воды; свыше 150°С - обугливание;

свыше 300°С - выпаривание ткани, газообразование. Динамика протекания этих процессов изображена на рис. 31.6.

Рис. 31.6. Динамика изменения температуры ткани под воздействием непрерывного лазерного излучения

1 фаза. Сначала температура ткани повышается от 37 до 100 °С. В этом диапазоне температур термодинамические свойства ткани остаются практически неизменными, и происходит линейный рост температуры со временем (α = const и I = const).

2 фаза. При температуре 100 °С начинается выпаривание тканевой воды, и до окончания этого процесса температура остается постоянной.

3 фаза. После выпаривания воды температура вновь начинает расти, но медленнее, чем на участке 1, так как обезвоженная ткань поглощает энергию слабее нормальной.

4 фаза. По достижении температуры Т ≈ 150 °С начинается процесс обугливания и, следовательно, «почернения» биоткани. При этом коэффициент поглощения α возрастает. Поэтому наблюдается нелинейный, ускоряющийся со временем рост температуры.

5 фаза. По достижении температуры Т ≈ 300 °С начинается процесс испарения обезвоженной обугленной биоткани и рост температуры вновь прекращается. Именно в этот момент лазерный луч рассекает (удаляет) ткань, т.е. становится скальпелем.

Степень повышения температуры зависит от глубины залегания ткани (рис. 31.7).

Рис. 31.7. Процессы, протекающие в облучаемых тканях на различной глубине: а - в поверхностном слое ткань нагревается до нескольких сотен градусов и испаряется; б - мощность излучения, ослабленного верхним слоем, недостаточна для испарения ткани. Происходит коагуляция ткани (иногда совместно с обугливанием - черная жирная линия); в - происходит нагревание ткани вследствие передачи теплоты из зоны (б)

Протяженности отдельных зон определяются как характеристиками лазерного излучения, так и свойствами самой ткани (в первую очередь коэффициентами поглощения и теплопроводности).

Воздействие мощного сфокусированного пучка лазерного излучения сопровождается и возникновением ударных волн, которые могут стать причиной механического повреждения прилегающих тканей.

Абляция ткани под воздействием мощного импульсного лазерного излучения

При воздействии на ткань коротких импульсов лазерного излучения с высокой плотностью энергии реализуется другой механизм рассечения и удаления биоткани. В этом случае происходит очень быстрый нагрев тканевой жидкости до температуры Т > Т кип. При этом тканевая жидкость оказывается в метастабильном перегретом состоянии. Затем происходит «взрывное» вскипание тканевой жидкости, которое сопровождается удалением ткани без обугливания. Это явление называется абляцией. Абляция сопровождается генерацией механических ударных волн, способных вызвать механическое повреждение тканей в окрестностях зоны лазерного воздействия. Этот факт необходимо учитывать при выборе параметров импульсного лазерного излучения, например при шлифовке кожи, сверлении зубов или при лазерной коррекции остроты зрения.

31.7. Использование лазерного излучения в медицине

Процессы, характеризующие взаимодействие лазерного излучения (ЛИ) с биообъектами, можно разделить на 3 группы:

невозмущающее воздействие (не оказывающее заметного действия на биообъект);

фотохимическое действие (возбужденная лазером частица либо сама принимает участие в соответствующих химических реакциях, либо передает свое возбуждение другой частице, участвующей в химической реакции);

фоторазрушение (за счет выделения тепла или ударных волн).

Лазерная диагностика

Лазерная диагностика представляет собой невозмущающее воздействие на биообъект, использующее когерентность лазерного излучения. Перечислим основные методы диагностики.

Интерферометрия. При отражении лазерного излучения от шероховатой поверхности возникают вторичные волны, которые интерферируют между собой. В результате образуется картина темных и светлых пятен (спеклов), расположение которых дает информацию о поверхности биообъекта (метод спеклоинтерферометрии).

Голография. С помощью лазерного излучения получают 3-мерное изображение объекта. В медицине этот метод позволяет получать объемные изображения внутренних полостей желудка, глаза и т.д.

Рассеяние света. При прохождении остронаправленного лазерного пучка через прозрачный объект происходит рассеяние света. Регистрация угловой зависимости интенсивности рассеянного света (метод нефелометрии) позволяет определять размеры частиц среды (от 0,02 до 300 мкм) и степень их деформации.

При рассеянии может изменяться поляризация света, что также используется в диагностике (метод поляризационной нефелометрии).

Эффект Доплера. Этот метод основан на измерении доплеровского сдвига частоты ЛИ, который возникает при отражении света даже от медленно движущихся частиц (метод аненометрии). Таким способом измеряется скорость кровотока в сосудах, подвижность бактерий и т.д.

Квазиупругое рассеяние. При таком рассеянии происходит незначительное изменение длины волны зондирующего ЛИ. Причина этого - изменение в процессе измерения рассеивающих свойств (конфигурации, конформации частиц). Временные изменения параметров рассеивающей поверхности проявляются в изменении спектра рассеяния по сравнению со спектром подающего излучения (спектр рассеяния либо уширяется, либо в нем появляются дополнительные максимумы). Данный метод позволяет получать информацию о меняющихся характеристиках рассеивателей: коэффициенте диффузии, скорости направленного транспорта, размерах. Так осуществляется диагностика макромолекул белков.

Лазерная масс-спектроскопия. Этот метод используют для исследования химического состава объекта. Мощные пучки лазерного излучения испаряют вещество с поверхности биообъекта. Пары подвергают масс-спектральному анализу, по результатам которого судят о составе вещества.

Лазерный анализ крови. Лазерный луч, пропускаемый через узкий кварцевый капилляр, по которому прокачивается специально обработанная кровь, вызывает флуоресценцию ее клеток. Флуоресцентное свечение затем улавливается чувствительным датчиком. Это свечение специфично для каждого типа клеток, проходящих поодиночке через сечение лазерного луча. Подсчитывается общее число клеток в заданном объеме крови. Определяются точные количественные показатели по каждому типу клеток.

Метод фоторазрушения. Его используют для исследования поверхностного состава объекта. Мощные пучки ЛИ позволяют брать микропробы с поверхности биообъектов путем испарения вещества и последующего масс-спектрального анализа этого пара.

Использование лазерного излучения в терапии

В терапии используются низкоинтенсивные лазеры (интенсивность 0,1-10 Вт/см 2). Низкоинтенсивное излучение не вызывает заметного деструктивного действия на ткани непосредственно во время облучения. В видимой и ультрафиолетовой областях спектра эффекты облучения обусловлены фотохимическими реакциями и не отличаются от эффектов, вызываемых монохроматическим светом, полученным от обычных некогерентных источников. В этих случаях лазеры являются просто удобными монохроматическими источниками света, обеспечи-

Рис. 31.8. Схема применения лазерного источника для внутрисосудистого облучения крови

вающими точную локализацию и дозировку воздействия. В качестве примера на рис. 31.8 приведена схема использования источника лазерного излучения для внутрисосудистого облучения крови у больных с сердечной недостаточностью.

Ниже указаны наиболее распространенные методы лазеротерапии.

Терапия с помощью красного света. Излучение Не-Ne лазера с длиной волны 632,8 нм используется с противовоспалительной целью для лечения ран, язв, ишемической болезни сердца. Лечебный эффект связан с влиянием света этой длины волны на пролиферативную активность клетки. Свет выступает в роли регулятора клеточного метаболизма.

Терапия с помощью синего света. Лазерное излучение с длиной волны в синей области видимого света используется, например, для лечения желтухи новорожденных. Это заболевание - следствие резкого возрастания в организме концентрации билирубина, который имеет максимум поглощения в синей области. Если облучать детей лазерным излучением такого диапазона, то билирубин распадается, образуя водорастворимые продукты.

Лазерофизиотерапия - использование лазерного излучения при сочетании с различными методами электрофизиотерапии. Некоторые лазеры имеют магнитные насадки для сочетанного действия лазерного излучения и магнитного поля - магнитолазеротерапии. К ним относится магнито-инфракрасный лазерный терапевтический аппарат «Мильта».

Эффективность лазеротерапии увеличивается при сочетанном воздействии с лекарственными веществами, предварительно нанесенными на облучаемую зону (лазерофорез).

Фотодинамическая терапия опухолей. Фотодинамическая терапия (ФДТ) используется для удаления опухолей, доступных для облучения светом. ФДТ основана на применении локализующихся в опухолях фотосенсибилизаторов, повышающих чувствительность тканей при их

последующем облучении видимым светом. Разрушение опухолей при ФДТ основано на трех эффектах: 1) прямое фотохимическое уничтожение клеток опухоли; 2) повреждение кровеносных сосудов опухоли, приводящее к ишемии и гибели опухоли; 3) возникновение воспалительной реакции, мобилизирующей противоопухолевую иммунную защиту тканей организма.

Для облучения опухолей, содержащих фотосенсибилизаторы, используется лазерное излучение с длиной волны 600-850 нм. В этой области спектра глубина проникновения света в биологические ткани максимальна.

Фотодинамическая терапия применяется при лечении опухолей кожи, внутренних органов: легких, пищевода (при этом к внутренним органам лазерное излучение доставляется с помощью световодов).

Использование лазерного излучения в хирургии

В хирургии высокоинтенсивные лазеры используются для рассечения тканей, удаления патологических участков, остановки кровотечения, сваривания биотканей. Выбирая должным образом длину волны излучения, его интенсивность и длительность воздействия, можно получать различные хирургические эффекты. Так, для разрезания биологических тканей используется сфокусированный луч непрерывного СО 2 -лазера, имеющего длину волны λ = 10,6 мкм, мощность 2х10 3 Вт/см 2 .

Применение лазерного луча в хирургии обеспечивает избирательное и контролируемое воздействие. Лазерная хирургия имеет ряд преимуществ:

Бесконтактность, дающую абсолютную стерильность;

Селективность, позволяющую выбором длины волны излучения дозированно разрушать патологические ткани, не затрагивая окружающие здоровые ткани;

Бескровность (за счет коагуляции белков);

Возможность микрохирургических воздействий, благодаря высокой степени фокусировки луча.

Укажем некоторые области хирургического применения лазеров.

Лазерная сварка тканей. Соединение рассеченных тканей представляет собой необходимый этап многих операций. На рисунке 31.9 показано, как сваривание одного из стволов крупного нерва осуществляется в контактном режиме с использованием припоя, который

Рис. 31.9. Сваривание нерва при помощи лазерного луча

каплями из пипетки подается по месту лазирования.

Разрушение пигментированных участков. Лазеры, работающие в импульсном режиме, используются для разрушения пигментированных участков. Данный метод (фототермолиз) используется для лечения ангиом, татуировок, склеротических бляшек в кровеносных сосудах и т.п.

Лазерная эндоскопия. Внедрение эндоскопии произвело коренной переворот в оперативной медицине. Чтобы избежать больших открытых операций, лазерное излучение доставляется к месту воздействия с помощью волоконно-оптических световодов, которые позволяют подводить лазерное излучение к биотканям внутренних полых органов. При этом значительно снижается риск инфицирования и возникновения послеоперационных осложнений.

Лазерный пробой. Короткоимпульсные лазеры в сочетании со световодами применяют для удаления бляшек в сосудах, камней в желчном пузыре и почках.

Лазеры в офтальмологии. Использование лазеров в офтальмологии позволяет выполнять бескровные оперативные вмешательства без нарушения целостности глазного яблока. Это операции на стекловидном теле; приваривание отслоившейся сетчатки; лечение глаукомы путем «прокалывания» лазерным лучом отверстий (диаметром 50÷100 мкм) для оттока внутриглазной жидкости. Послойная абляция тканей роговицы применяется при коррекции зрения.

31.8. Основные понятия и формулы

Окончание таблицы

31.9. Задачи

1. В молекуле фенилаланина разница энергий в основном и возбужденном состояниях составляет ΔЕ = 0,1 эВ. Найти соотношение между заселенностями этих уровней при Т = 300 К.

Ответ: n = 3,5*10 18 .