Важные изобретения 20 века список. Семь изобретений и открытий хх века, перевернувших мир

Первое серьезное открытие - пенициллин. Эта молекула стала первым в мире антибиотиком и сохранила жизни миллионам людей во время войны. В 1928 году биолог Александр Флеминг в ходе эксперимента заметил, что обычная плесень уничтожает бактерии. В 1938 году двое ученых, продолжавших работу над свойствами пенициллина, сумели выделить его чистую форму, на основе которой вещество и производилось как лекарство. Все это дало огромный толчок в исследованиях и создании новых лекарственных средств, благодаря которым врачи по всему миру могут бороться с большинством заболеваний.

Было сделано открытие Макса Планка, которое объясняло всему научному миру, как ведет себя энергия внутри атома. На основе этих данных Эйнштейн создал квантовую теорию в 1905 году, а следом за ним Нильс Бор сумел создать первую модель атома. Это дало толчок электронике, атомной энергетике, развитию и . Все ученые в своих открытиях пользовались этими данными. Благодаря этому открытию мир стал таким высокотехнологичным.

Открытия, оцененные недавно

Третье важное открытие сделал в 1936 году Джон Кейнс. Он разработал теорию саморегуляции рыночной экономики. Его книги и выдвинутые мысли в них помогли развиться и создали классическую школу, по которой до сих пор преподают в высших учебных университетах. Благодаря его работам макроэкономика появилась как .

Четвертое важное открытие было сделано в 1911 году Камерлингом-Онессом. Он впервые ввел понятие сверхпроводимости. Это состояние, в котором некоторые материалы могут обладать нулевым сопротивлением электричеству. Вклад этого открытия в том, что благодаря таким материалам стало возможным создание сильных магнитных полей, которые нужны для создания условий для многочисленных опытов. Благодаря возможностям проводимости уже сейчас начинают создавать линии электропередачи гораздо меньших размеров. Сверхпроводники являются частями большинства серьезного научного оборудования.

Пятое открытие было сделано в 1985 году, когда удалось обнаружить озоновые дыры, которые возникают в атмосфере из-за выброса большого количества фреонов. Восстановление слоя озона очень важно для предотвращения проникновения большого количества солнечной радиации на Землю. Уменьшение количество озона влияет на количество раковых заболеваний и жизнь животных и растений.

Благодаря этому открытию, человечество предприняло меры по сокращению выбросов фреонов на основе брома и хлора и замену вещества на фторсодержащие фреоны. Но самое главное, что люди задумались о сохранении планеты и о том, как избежать разрушения экологии в результате антропогенной деятельности.

XX век - век научных открытий и достижений. Трудно представить, что ещё в начале XX века люди не знали, что такое телевизор, автомобиль или компьютер. Ряд важнейших открытий положил начало новой эры, более технологичной.

1. Научный XX век начался с революции. Причем устроил ее один-единственный человек - по имени… нет, не Карл Маркс. А Макс Планк. В конце XIX века Планка пригласили на должность профессора Берлинского университета, однако вместо того, чтобы в свободное от лекций время играть в бридж или хотя бы в дурака, профессор взялся объяснить неразумному человечеству, как распределяется энергия в спектре абсолютно черного тела. Надо думать, с абсолютно белым телом все было к тому времени ясно. Самое удивительное, что в 1900 году упрямый Планк вывел-таки формулу, которая очень хорошо описывала поведение энергии в пресловутом спектре упомянутого абсолютно черного тела.
Правда, выводы из этой формулы следовали фантастические. Получалось, что энергия излучается не равномерно, как от нее, собственно, и ждали, а кусочками - квантами. Сначала Планк и сам усомнился в собственных выводах, но 14 декабря 1900 года все же доложил о них Немецкому физическому обществу. Так, на всякий случай.
Планку не просто поверили на слово. На основе его выводов в 1905 году Альберт Эйнштейн создал квантовую теорию фотоэффекта, а вскоре Нильс Бор построил первую модель атома, состоящую из ядра и электронов, летающих по определенным орбитам. И по всей планете понеслось! Переоценить последствия открытия, которое сделал Макс Планк, практически невозможно. Выбирайте любые слова - гениально, невероятно, обалдеть, вот это да и даже ух ты! - все будет мало.
Благодаря Планку развилась атомная энергетика, электроника, генная инженерия, получили мощнейший толчок химия, физика, астрономия. Потому что именно Планк четко определил границу, где кончается ньютоновский макромир (в котором вещество, как известно, меряют килограммами) и начинается микромир, в котором нельзя не учитывать влияния друг на друга отдельных атомов. А еще благодаря Планку мы знаем, на каких энергетических уровнях живут электроны и насколько им там удобно.

2. Второе десятилетие XX века принесло миру еще одно открытие, которое перевернуло умы практически всех ученых - хотя умы у порядочных ученых и так набекрень. В 1916 году Альберт Эйнштейн завершил работу над общей теорией относительности (ОТО). Кстати, ее еще называют теорией гравитации. Согласно этой теории, гравитация - это не результат взаимодействия тел и полей в пространстве, а следствие искривления четырехмерного пространства времени. Как только он это доказал, все стало вокруг голубым и зеленым. В смысле - все поняли суть вещей и обрадовались.
Большинство парадоксальных и противоречащих «здравому смыслу» эффектов, которые возникают при околосветовых скоростях, предсказаны именно ОТО. Самый известный - эффект замедления времени, при котором движущиеся относительно наблюдателя часы идут для него медленнее, чем точно такие же часы у него на руке. При этом длина движущегося объекта вдоль оси движения сжимается. Теперь общая теория относительности применяется уже ко всем системам отсчета (а не только к движущимся с постоянной скоростью друг относительно друга).
Однако сложность вычислений привела к тому, что на работу потребовалось 11 лет. Первое подтверждение теория получила, когда с ее помощью удалось описать довольно кривую орбиту Меркурия - и все от облегчения перевели дух. Затем ОТО объяснила искривление лучей от звезд при прохождении их рядом с Солнцем, красное смещение наблюдаемых в телескопы звезд и галактик. Но самым важным подтверждением ОТО стали черные дыры. Расчеты показали, что если Солнце сжать до радиуса трех метров, сила его притяжения станет такой, что свет не сможет покинуть звезду. И в последние годы ученые нашли целые горы таких звезд!

3. Когда Бор и Резерфорд в 1911 году предположили, что атом устроен по образу и подобию Солнечной системы, физики возликовали. На основе планетарной модели, дополненной представлениями Планка и Эйнштейна о природе света, удалось рассчитать спектр атома водорода. Трудности начались, когда приступили к следующему элементу -гелию. Все расчеты показывали результат, прямо противоположный экспериментам. К началу 1920-х теория Бора померкла. Молодой немецкий физик Гейзенберг вычеркнул из теории Бора все предположения, оставив лишь то, что можно было измерить при помощи напольных весов.
В конце концов он установил, что скорость и местонахождение электронов нельзя измерить одновременно. Соотношение получило название «принцип неопределенности Гейзенберга», а электроны приобрели репутацию ветреных красоток. Которые сегодня в кондитерской, а завтра - блондинки. Однако на этом странности с элементарными частицами не закончились. К двадцатым годам физики уже притерпелись к тому, что свет может проявлять свойства волны и частицы, каким бы это ни казалось парадоксальным. А в 1923 году француз де Бройль предположил, что свойства волны могут проявлять и «обычные» частицы наглядно показав волновые свойства электрона.
Эксперименты де Бройля подтвердились сразу в не- скольких странах. В 1926 году, соединив математическое описание волны и аналог уравнений Максвелла для света, австрийский физик Шредингер описал материальные волны де Бройля. А сотрудник Кембриджского университета Дирак вывел общую теорию, частными случаями которой стали теории Шредингера и Гейзенберга. Хотя в двадцатые годы о многих элементарных частицах, известных сейчас любому школьнику, физики даже не подозревали, их теория квантовой механики прекрасно описывает движение в микромире. И за последние 90 лет ее основы не претерпели изменений. Квантовая механика сейчас применяется во всех естественных науках, когда они выходят на атомарный уровень - от медицины и биологии до химии и минералогии, а также во всех инженерных науках. С ее помощью, в частности, рассчитаны молекулярные орбитали (а что - исключительно полезная в хозяйстве вещь). Следствием стало изобретение, например, лазеров, транзисторов, сверхпроводимости, а заодно и компьютеров. А еще разработана физика твердого тела, благодаря которой: а) каждый год появляются все новые материалы, б) возникла возможность четко видеть структуру вещества. Еще бы приладить физику твердого тела к сексуальной жизни - и тогда каждый мужчина будет с благодарностью выговаривать фамилию Гейзенберг.

4. Тридцатые годы смело можно называть радиоактивными. Во всех смыслах этого слова. Правда, еще в 1920 году Эрнест Резерфорд на заседании Британской ассоциации содействия развитию наук высказал довольно странную (по тем, разумеется, временам) гипотезу. В попытке объяснить, почему положительно заряженные протоны не убегают в панике друг от друга, он заявил: помимо положительно заряженных частиц в ядре атома есть и некие нейтральные частицы, равные по массе протону. По аналогии с протонами и электронами он предложил называть их нейтронами. Ассоциация поморщилась и предпочла забыть экстравагантную выходку Резерфорда. И только через десять лет, в 1930 году, немцы Боте и Беккер приметили, что при облучении бериллия или бора альфа-частицами возникает необычное излучение. В отличие от альфа-частиц неведомые штуковины, вылетающие из реактора, обладали намного большей проникающей способностью. И вообще параметры у этих частиц были другие. Через два года, 18 января 1932 года, Ирен и Фредерик Жолио-Кюри, предаваясь милым супружеским забавам, направили излучение Боте-Беккера на более тяжелые атомы. И выяснили, что под воздействием лучей Боте-Беккера те становятся радиоактивными. Так была открыта искусственная радиоактивность. А 27 февраля того же года Джеймс Чедвик проверил опыт Жолио-Кюри. И не просто подтвердил, а выяснил, что виноваты в выбивании ядер из атомов новые, незаряженные частицы с массой чуть больше, чем у протона. Именно их нейтральность позволяла беспрепятственно вламываться в ядро и дестабилизировать его. Так Чедвик окончательно открыл нейтрон. Открытие это принесло человечеству много тягот и перемен. К концу 1930-х годов физики доказали, что под воздействием нейтронов ядра атомов делятся. И что при этом выделяется еще больше нейтронов. Это привело, с одной стороны, к бомбардировке Хиросимы и Нагасаки, к десятилетиям холодной войны, с другой, к развитию атомной энергетики, а с третьей - к широкому использованию радиоизотопов в самых разнообразных несекретных научных сферах.

5. Развитие квантовой теории не просто позволило ученым понимать, что происходит внутри вещества. Следующим шагом стала попытка повлиять на эти процессы. К чему это привело в случае с нейтроном, описано выше. А 16 декабря 1947 года сотрудники американской компании АТ&Т Веll Laboratories Джон Бардин, Уолтер Браттейн и Уильям Шокли научились при помощи малых токов управлять большими токами, протекающими через полупроводники (Нобелевская премия 1966 года). Так был изобретен транзистор - прибор, состоящий из двух p-n переходов, направленных навстречу друг другу. Ток по такому переходу может идти только в одном направлении.
А если на переходе поменять полярность, то ток перестает течь. Два же перехода, направленные друг к другу, дали просто уникальные возможности для игр с электричеством. Транзистор стал основой для развития всех наук, включая ветеринарию. Он вышиб из электроники лампы, чем резко сократил вес и объем всей аппаратуры (и количество пыли в наших домах). Открыл дорогу для появления логических микросхем, что привело в итоге к появлению в 1971 году микропроцессора и созданию современных компьютеров. Да что там компьютеры - сейчас в мире нет ни одного прибора, ни одного автомобиля, ни одной квартиры, в которых не используются транзисторы.

6. Немец Карл Вольдемар Циглер был химиком. Не, реально, это безумно увлекательная история. Значит, был этот самый Карл Вольдемар немцем и химиком. И находился под большим впечатлением от реакции Гриньяра, в которой ученые сильно упростили синтез органических веществ. И наш Карл пытался понять: а можно ли сделать то же самое с другими металлами? Кстати, вопрос был не праздный, ведь работал Циглер в Кайзеровском институте по изучению угля. А поскольку побочный продукт угольной индустрии - этилен, его утилизация стала проблемой. В 1952 году он изучал распад одного из реагентов - литийалкила на гидрид лития и олефин. И получил ПНД - полиэтилен низкого давления. Но полностью заполимеризовать этилен не получалось. Через пару месяцев в лаборатории Циглера произошел казус. По окончании реакции из колбы неожиданно выпал не полимер, а димер (соединение двух молекул этилена) - альфа-бутен. Оказалось, что нерадивый студент просто плохо отмыл реактор от солей никеля. И хотя эти самые соли остались на стенках в микроскопических количествах, этого хватило, чтобы напрочь зарубить основную реакцию. Но вот что любопытно - анализ смеси показал, что соли никеля во время реакции не изменились.
То есть они выступили катализатором димеризации. Этот вывод сулил огромные прибыли - ведь прежде для получения полиэтилена приходилось добавлять к этилену намного больше алюмоорганики. Опять же, проблем синтезу добавляли и высокое давление, и большая температура. Плюнув на алюминий, Циглер начал перебирать переходные металлы в поисках идеального катализатора. И нашел в 1953 году сразу несколько. Самыми мощными оказались комплексы на основе хлоридов титана. Циглер рассказал о своем открытии в итальянской компании «Монтекатини», и там его катализаторы использовали на другом мономере - пропилене. Побочный продукт переработки нефти, пропилен стоил в десять раз дешевле этилена, да и давал возможность поиграть со структурой полимера. Игры привели к небольшой модификации катализатора, из-за чего Натта получил стереорегулярный полипропилен. В нем все молекулы пропилена располагались одинаково. Катализаторы Циглера-Наттадали химикам ничем не сравнимый контроль над полимеризацией. С их помощью, например, химики создали искусственный аналог каучука. Металлоорганические катализаторы, которые сделали большинство синтезов проще и дешевле, используются практически на всех химических заводах мира. Но главное место по-прежнему занимает полимеризация этилена и пропилена. Сам Циглер, несмотря на промышленное применение его работы, всегда считал себя ученым-теоретиком. А студента, который плохо вымыл реактор, понизили в статусе до лабораторной мыши.

7. 12 апреля 1961 года в 9 часов 7 минут утра произошло событие, которое, без сомнения, всколыхнуло весь мир. Со словами «Поехали!» со «второй площадки» отправился в космос первый человек. Конечно, это была не первая ракета, облетевшая вокруг Земли,- первый искусственный спутник стартовал 4 октября 1957 года. Но именно Юрий Гагарин стал реальным воплощением мечты человечества о звездах. Запуск человека в космос буквально катализировал научно-техническую революцию. Было установлено, что в невесомости могут спокойно жить не только бактерии, растения и Белка со Стрелкой, но и человек. А главное, выяснилось, что пространство между планетами преодолимо. Человек уже побывал на Луне. Сейчас готовится экспедиция к Марсу. Аппараты всевозможных космических агентств буквально наводнили Солнечную систему. Они крутятся вокруг Юпитера, Сатурна, бродят по поясу Койпера, катаются по марсианским пустыням. А число спутников вокруг Земли перевалило за несколько тысяч. Это и метеорологические приборы, и научные (в том числе знаменитые орбитальные телескопы), и коммерческие спутники связи. Благодаря последним, кстати, можно спокойно позвонить в любую точку мира. Сидя в Москве, поболтать в чате с людьми из Сиднея, Кейптауна и Нью-Йорка. Пробежаться по нескольким тысячам телевизионных каналов со всего света. Или отправить письмо по электронной почте в Антарктиду - тем более, все равно никто не ответит.

8. 26 июля 1978 года в семье Лесли и Гилберта Браунов родилась дочь Луиза. Наблюдавшие за кесаревым сечением гинеколог Патрик Стэптоу и эмбриолог Боб Эдвардс чуть не лопались от гордости, ведь это они сделали то, ради чего весь мир занимается сексом - зачали Луизу. М-м-м… не надо думать о неприличном. На самом деле ничего порнографического не произошло. Просто мадам Лесли Браун, мамаша Луизы, страдала от непроходимости маточных труб и, как и многие миллионы женщин на Земле, не могла зачать сама. Пыталась она, кстати, больше девяти лет - но увы. Все входило, но ничего не выходило. Чтобы решить проблему, Стэптоу и Эдвардc сделали сразу несколько научных открытий. Они придумали, как извлечь из женщины яйцеклетку, не повредив ее, как создать этой самой яйцеклетке условия для нормальной жизни в пробирке, как нужно ее оплодотворять и в какой момент вернуть обратно. Опять же, не повредив. И родители, и ученые вскоре убедились, что девочка совершенно нормальна. Вскоре у нее таким же способом появилась сестра, а к 2007 году благодаря методике экстракорпорального оплодотворения (ЭКО) по всему миру родились почти два миллиона детей. Которых бы никогда не было, если бы не опыты Стэптоу и Эдвардса. Да вообще сейчас страшно сказать, что творится. Взрослые дамы сами рожают себе внучек, если их дочери неспособны выносить дитя, а жены рожают от погибших мужей. Многочисленные опыты подтвердили, что «дети из пробирки» ничем не отличаются от зачатых естественным путем, так что с каждым годом методика ЭКО завоевывает все большую популярность. Гм. Хотя по старинке все-таки намного приятнее.

9. В1985 году Роберт Керл, Гарольд Крото, Ричард Смолли и Хит О"Брайен изучали масс-спектры паров графита, которые образовывались под воздействием лазера на твердый образец. И обнаружили странные пики, которые соответствовали атомным массам 720 и 840 единиц. Вскоре стало понятно, что ученые открыли новую разновидность углерода, которая получила название «фуллерен» - по имени инженера Р. Бакминстера Фуллера, чьи конструкции очень походили на открытые молекулы. Первая углеродная разновидность известна под названием «футболен», а вторая - «регбен», поскольку они действительно похожи на мячи для футбола и регби. Сейчас фуллерены из-за своих уникальных физических свойств активно используются в самых разных приборах. Однако главное не это - на основе методики 1985 года ученые придумали, как сделать углеродные нанотрубки, скрученные и сшитые слои графита. На данный момент известны нанотрубки диаметром 5–7 нанометров и длиной до 1 см (!). Несмотря на то что сделаны они только из углерода, такие нанотрубки проявляют самые различные физические свойства - от металлических до полупроводниковых.
На их основе разрабатываются новые материалы для оптоволоконной связи, светодиоды и дисплеи. Нанотрубки используются как капсулы для доставки в нужное место организма биологически активных веществ, а также как нанопипетки. На их основе разработаны сверхчувствительные датчики химических веществ, что уже применяются для мониторинга окружающей среды, в военных, медицинских и биотехнологических целях. Из них делают транзисторы, нанопровода, топливные элементы. Самая последняя новинка в сфере нанотрубок - искусственные мышцы. Работа ученых из Ренселлеровского политехнического института, опубликованная в июле 2007 года, показала, что можно создать пучок нанотрубок, который ведет себя как мышечная ткань. Он обладает такой же проводимостью электрического тока, как мышцы, и не изнашивается со временем - искусственная мышца выдержала 500 тысяч сжатий на 15% от первоначальной длины, и ее первоначальная форма, механические и проводящие свойства не изменились. Это открытие, возможно, приведет к тому, что вскоре все инвалиды получат новые руки и ноги, которыми можно будет управлять силой мысли (ведь мысль для мышц выглядит, как электрический сигнал «сжиматься-разжиматься»). Жаль, правда, что некоторым людям нельзя приделать новую башку. Но это наверняка дело ближайшего будущего.

10. 5 июля 1996 года родилась новая эра биотехнологий. Лицом и достойным представителем этой эры стала обыкновенная овца. Вернее, обыкновенной овца была только с виду - на самом деле ради ее появления сотрудники института Рослина (Великобритания) несколько лет работали не разгибаясь. Яйцеклетку, из которой позже появилась овечка Долли, выпотрошили, а затем вставили в нее клеточное ядро взрослой овцы. Затем развившийся эмбрион подсадили овце обратно в матку и стали ждать, что получится. Надо сказать, что Долли была не единственным кандидатом на вакансию «первый клон крупного животного в мире» - у нее было 296 конкурентов. Но они все погибли на разных стадиях эксперимента. А Долли выжила! Правда, дальнейшая судьба бедняжки оказалась незавидной. Концевые участки ДНК -теломеры, которые служат биологическими часами организма, уже отмерили 6 лет, которые они прожили в теле матери Долли. Поэтому спустя еще 6 лет, 14 февраля 2003 года, клонированная овца умерла от навалившихся на нее «старых» заболеваний - артрита, специфического воспаления легких и множества других недугов. Однако появление Долли на обложке Nature в феврале 1997 года произвело настоящий взрыв - она стала символом могущества науки и власти человека над природой. За прошедшие с рождения Долли одиннадцать лет удалось клонировать самых разных животных - поросят, собак, породистых быков. Получены даже клоны второго поколения -клоны от клонов. Правда, пока не удалось до конца решить проблему с теломерами, клонирование человека по всему миру запрещено. Однако исследования продолжаются.

Как известно, для того, что бы смотреть в будущее, необходимо знать прошлое. Поэтому сегодня речь пойдет именно о XX веке, веке открытий, который изменил образ жизни и окружающий нас мир. Стоит сразу отметить, что это не будет список лучших открытий века или какой-либо иной топ, это будет краткий осмотр части тех открытий, которые изменяли, а возможно и изменяют мир.


1. Квантовая теория Планка. Он вывел формулу, определяющую форму спектральной кривой излучения и универсальную постоянную. Открыл мельчайшие частицы – кванты и фотоны, с помощью которых Эйнштейн объяснил природу света. В 20-х годах Квантовая теория переросла в квантовую механику.

2. Открытие рентгеновского излучения – электромагнитное излучение с широким диапазоном длин волн. Открытие Х-лучей Вильгельмом Рёнтгеном сильно повлияло на жизнь человека и сегодня без них невозможно представить современную медицину.

3.Теория относительности Эйнштейна. В 1915 году Эйнштейн ввел понятие относительности и вывел важную формулу, связавшую энергию и массу. Теория относительности объяснила суть гравитации – она возникает вследствие искривления четырехмерного пространства, а не результате взаимодействия тел в пространстве.

4. Открытие пенициллина. Плесневый гриб Penicillium notatum, попадая к культуре бактерий, вызывает полную их гибель – это было доказано Александром Флеммингом. В 40-х годах был разработана производственная технология пенициллина, который в дальнейшем стал выпускаться в промышленном масштабе.


5 Волны де Бройля. В 1924 году было выяснено, что корпускулярно-волновой дуализм присущ всем частицам, а не только фотонам. Бройль представил их волновые свойства в математическом виде. Теория позволила развить концепцию квантовой механики, объяснила дифракцию электронов и нейтронов.

6 Открытие структуры новой спирали ДНК. 1953 году была получена новая модель строения молекулы, путем объединения сведений рентгеноструктурного анализа ДНК Розалин Франклин и Мориса Уилкинса и теоретических разработок Чаргаффа. Ее вывели Френсис Крик и Джеймс Уотсон.


7 Планетарная модель атома Резерфорда. Он вывел гипотезу о строении атома и извлек энергию из атомных ядер. Модель объясняет основы закономерности заряженных частиц.

8 Катализаторы Циглера-Ната. В 1953 году они осуществили поляризацию этилена и пропилена.

9 Открытие транзисторов. Прибор, состоящий из 2-х p-n переходов, которые направлены навстречу друг другу. Благодаря его изобретению Юлием Лилиенфельдом, техника начала уменьшаться в размерах. Первый действующий биполярный транзистор в 1947 представили Джон Бардин, Уильям Шокли и Уолтер Браттейн.

10 Создание радиотелеграфа. Изобретение Александра Попова с помощью азбуки Морзе и радиосигналов впервые спасло корабль на рубеже 19 и 20 веков. Но первым запатентовал аналогичное изобретение Гулиельмо Марконе.


11 Открытие нейтронов. Эти незаряженные частицы с массой, немного большей, чем у протонов позволили без препятствий проникать в ядро и дестабилизировать его. Позже было доказано, что под воздействием этих частиц ядра делятся, но возникает еще больше нейтронов. Так была открыта искусственная радиоактивность.

12 Методика экстракорпорального оплодотворения (ЭКО). Эдварс и Стептоу придумали, как извлечь из женщины неповрежденную яйцеклетку, создали в пробирке оптимальные для ее жизни и роста условия, придумали, как ее оплодотворить и в какое время вернуть обратно в тело матери.

13 Первый полет человека в космос. В 1961 году именно Юрий Гагарин первым осуществил этот знаменательный полет, ставший реальным воплощением мечты о звездах. Человечество узнало, что пространство между планетами преодолимо, и в космосе могут спокойно находиться бактерии, животные и даже человек.



14 Открытие фуллерена. В 1985 году учеными была открыта новая разновидность углерода – фуллерен. Сейчас из-за своих уникальных свойств он используется во многих приборах. На основе этой методики, были созданы нанотрубки из углерода – скрученные и сшитые слои графита. Они показывают самые разнообразные свойства: от металлических до полупроводниковых.

15 Клонирование. В 1996 ученым удалось получить первый клон овцы, названной Долли. Яйцеклетку выпотрошили, вставили в нее ядро взрослой овцы и подсадили в матку. Долли стала первым животным, которому удалось выжить, остальные эмбрионы разных животных погибли.

16 Открытие черных дыр. В 1915 году Карлом Шварцшильдом была выдвинута гипотеза о существовании области во времени и пространстве, гравитация которой настолько велика, что ее не могут покинуть даже объекты, движущиеся со скоростью света - черных дыр.


17 Теория Большого взрыва. Это космологическая общепринятая модель, в которой описано ранее развитие Вселенной, находившейся в сингулярном состоянии, характеризующемся бесконечной температурой и плотностью вещества. Начало модели было положено Эйнштейном в 1916 году.

18 Открытие реликтового излучения. Это космическое микроволновое фоновое излучение, сохранившееся с начала образования Вселенной и равномерно ее заполняющее. В 1965 году его существование было экспериментально подтверждено, и оно служит одним из основных подтверждений теории Большого взрыва.

19 Приближение к созданию искусственного интеллекта. Это технология создания интеллектуальных машин, впервые получившая определение в 1956 году Джоном Маккарти. Согласно ему, исследователи для решения конкретных задач могут использовать методы понимания человека, которые биологически могут не наблюдаются у людей.

20 Изобретение голография. Этот особый фотографический метод предложен в 1947 году Дэннисом Габором, в котором при помощи лазера регистрируются и восстанавливаются трехмерные изображения объектов, близкие к реальным.

21 Открытие инсулина. В 1922 году Фредериком Бантингом был получен гормон поджелудочной железы, и сахарный диабет перестал быть фатальным заболеванием.


22 Группы крови. Это открытие в 1900–1901 разделило кровь на 4 группы: О, А, В и АВ. Стало возможным правильное переливание крови человеку, которое не заканчивалось бы трагически.

23 Математическая теория информации. Теория Клода Шеннона дала возможность определения емкости коммуникационного канала.

24 Изобретение Нейлона. Химик Уоллес Карозерс в 1935 году открыл способ получения этого полимерного материала. Он открыл некоторые его разновидности с высокой вязкостью даже при больших температурах.

25 Открытие стволовых клеток. Они являются прародительницами всех имеющихся клеток в организме человека и имеют способность самообновляться. Их возможности велики и еще только начинают исследоваться наукой.


Несомненно, что все эти открытия - лишь малая часть того, что XX век показал обществу и нельзя сказать, что лишь эти открытия были значимыми, а все остальные стали лишь фоном, это совсем не так.

Именно прошлый век показал нам новые границы Вселенной, увидела свет Теория относительности Эйнштейна, были открыты квазары (сверхмощные источники излучения в нашей Галактике), открыты и созданы первые углеродные нанотрубки, обладающие уникальной сверхпроводимостью и прочностью.

Все эти открытия, так или иначе - лишь вершина айсберга, который включает в себя более чем сотню значимых открытий за прошедшее столетие. Естественно, что все они стали катализатором изменений в мире, в котором мы с вами сейчас живем и несомненным остается тот факт, что на этом изменения не заканчиваются.

20й век можно смело назвать если не «золотым», то уж точно «серебряным» веком открытий, однако оглядываясь назад и сравнивая новые достижения с прошлыми, думается, что в будущем нас ждет еще не мало интереснейших великих открытий, собственно, преемник прошлого века, нынешний XXI лишь подтверждает эти взгляды.

Ещё в начале 20 столетия люди не могли себе даже представить, что такое автомобиль, телевизор или компьютер. Научные открытия в 20 веке оказали существенное влияние на всё человечество. В 20 веке было сделано больше научных открытий, чем за все предыдущие столетия. Знания человечества стремительно растут, поэтому можно с уверенностью сказать, что если такая тенденция сохранится, то в 21 веке будет совершено ещё больше научных открытий, что может в корне изменить жизнь человека.

В 20 столетии произошёл существенный прорыв в основном в двух сферах: физике и биологии.

Научные открытия в области физики

В этой области революция началась в самом начале 20-го столетия, когда Макс Планк вывел формулу распределения энергии в спектре абсолютно чёрного тела, из которой следовало, что энергия излучается не равномерно, как предполагали раньше, а частями - квантами. На этой основе Альберт Эйнштейн в 1905 году развил квантовую теорию фотоэффекта. Дальше Нильс Бор предложил модель строения атома, где электроны вращаются по орбитам вокруг ядра атома, словно планеты вокруг солнца.

Но на этом революция не закончилась. Альберт Эйнштейн в 1916 году разработал общую теорию относительности, что практически перевернуло представления всех учёных того времени. В соответствии с этой теорией, гравитация - это не процесс взаимодействия полей и тел в пространстве, а результат искривления пространства-времени. Эта теория объяснила появление так называемых чёрных дыр, а также искривление световых лучей от звёзд при их прохождении рядом с Солнцем.

В 1932 г. Джеймс Чэдвик доказал существование нейтрона. Это научное открытие привело к бомбардировке Хиросимы и Нагасаки, к развитию гонки вооружения и к холодной войне. Но в то же время это открытие послужило толчком к развитию атомной энергетики, а также к использованию радиоизотопов в различных научных сферах. За открытие нейтрона Джеймс Чэдвик в 1935 г. получил Нобелевскую премию в области физики.

16-го декабря 1947 г. Уолтер Браттейн, Джон Бардин и Уильям Шокли открыли свойства полупроводника - управление большими токами при помощи малых. Так появился транзистор - прибор, который состоял из пары p-n переходов. Принцип работы транзистора послужил основой для развития многих сфер научной деятельности и не только. Его изобретение привело к появлению микросхем и микропроцессоров - основы для современных компьютеров и радиоэлектронной аппаратуры и т.д.

Научные открытия в области биологии

Революция в этой области связана с открытием двойной спирали ДНК. Еще в 1869 ДНК открыл швейцарский биолог Фридрих Мишер. Но тогда он не предполагал, что это носитель генетической информации, который объединяет все живые существа, начиная от человека до земляного червя.

В 20-м веке английский учёный Розалин Франклин, проводя рентгеновский дифракционный анализ молекул ДНК, пришла к выводу, что ДНК имеет форму двойной спирали, которая напоминает винтовую лестницу. Розалин рассказала о результатах своего анализа исследователям Кембриджского Университета Фрэнсису Крику и Джеймсу Уотсону, которые также изучали структуру ДНК. И в 1953 г. они предложили трёхмерную структуру молекулы ДНК, за что и получили Нобелевскую премию. Но, несмотря на это, Розалин и дальше продолжала изучать свойства ДНК, открывая всё новые её качества. Научные работы Розалин впоследствии подтолкнули учёных к разработке новых медицинских препаратов, появлению генной инженерии, клонированию животных, органов человека и даже к попытке клонирования самого человека.

Важную роль в развитии биологии сыграл известный ученый Сидни Бреннер, который сделал открытие в области генетической регуляции развития органов. Он изучал вопрос об ограниченной продолжительности жизни клетки. Впоследствии было высказано предположение о запрограммированной смерти клетки - апоптозе.

Бреннер совместно с Джоном Салстоном занимался расшифровкой генома человека. Выполняя исследовательскую работу на земляном черве - нематоде, Сталстон определил первый ген самоубийства клетки.

Роберт Горвиц в 70-е годы, продолжая работу в этом направлении, открыл два гена клеточного самоубийства. Позднее он открыл ген, который удерживает клетку от самоуничтожения. Он нашел соответствующие гены у других животных и человека. Эти научные открытия позволяют продолжить работы в сфере управления процессами старения организмов и предположить возможность контроля развития многих смертельных заболеваний. В 2002 г. Горвиц и Салстон получили Нобелевскую премию в сфере физиологии и медицины.

Полезная статейка:

Человек - царь природы?

Научные открытия 20 века стали непосредственной производительной силой, которая обусловила качественные перемены в жизни человека. Бесспорно, эти открытия существенно изменили не только материальную сферу человека, но в то же время повлияли на духовное развитие человека и даже привели к общему упадку уровня нравственности. Это проявляется в неудержимом стремлении человека к материальным благам в ущерб моральным принципам.

Такое бурное и бесконтрольное развитие науки и техники в 20-м веке кроет в себе и большую опасность. Экологический кризис и создание оружия массового уничтожения, техногенные катастрофы и природные катаклизмы… причиной которых стал научно-технический прогресс. Что мы наблюдаем в настоящее время? Взрыв контейнера с радиоактивными отходами в 1957 г. под Челябинском, авария на химическом заводе в Бхопале (Индия) в 1984 г., авария на Чернобыльской АЭС в 1986 г., огромный разлив нефти из танкера Вальде у побережья Аляски в 1989 г., поджог 732 нефтяных скважин в Кувейте в 1991г., распространение вирусов СПИДа, атипичной пневмонии, свинного гриппа, - и это далеко не полный перечень.

Эта ситуация требует разумного контроля развития достижений науки. Но формальное сдерживание правовыми, юридическими методами сейчас не сможет предупредить многие негативные явления, способные причинить неприятности человечеству в ближайшем будущем. Человек вынужден сделать шаг навстречу природе, стать на один уровень с ней, изменить своё сознание. Homo sapiens должен осознать, что он не царь природы, а лишь её часть.

Люди с древних времен пытались воплотить в реальность сны и фантазии, чтобы упростить и разнообразить свой быт. Мы перечислим несколько изобретений 20 века, которые изменили привычный взгляд на жизнь.

1. Рентгеновские лучи

КВНовская шутка гласит, что рентген изобрел дьяк Иванов, говоривший жене: «Я тебя, стерва, насквозь вижу». На самом деле, электромагнитное излучение было открыто в конце XIX века немецким физиком Вильгельмом Рентгеном. Включив ток в катодной трубке, ученый заметил, что лежащий рядом бумажный экран, покрытый кристаллами платиноцианистого бария, издает зелёное свечение. По другой версии, жена принесла Рентгену ужин, и когда она ставила тарелку на стол, ученый обратил внимание, что её кости просвечивают сквозь кожу. Достоверно известно, что Вильгельм долгое время отказывался получать патент на изобретение, не считая свои исследования полноценным источником доходов. Рентгеновские лучи можно смело причислить к открытиям 20 века.

2. Самолет

С древних времен люди пытались создать летательный аппарат и подняться над землей. Но только в 1903-м году американским изобретателям братьям Райт удалось успешно испытать свой «Флайер - 1», оснащенный двигателем. Он находился в воздухе целых 59 секунд и пролетел над долиной Китти-Хоук 260 метров. Это событие считается моментом зарождения авиации. Сегодня без самолетов невозможно представить ни развитие бизнеса, ни отдых. «Стальные птицы» по-прежнему остаются самым быстрым видом транспорта.

3. Телевидение

Не так давно телевизор считался престижной вещью, подчеркивающей статус владельца. В разное время над его разработкой трудились многие умы. Еще в XIX веке португальский профессор Адриано Де Пайва и русский изобретатель Порфирий Бахметьев независимо друг от друга выдвинули идею первого устройства, способного передавать изображение по проводам. В 1907 году Макс Дикманн продемонстрировал первый телевизионный приемник с экраном размером 3х3. В том же году профессор Петербургского технологического института Борис Розинг доказал возможность применения катодно-лучевой трубки для преобразования электрического сигнала в видимое изображение. В 1908 году армянский физик Ованес Адамян получил патент на двуцветный аппарат для передачи сигналов. В конце 20-х годов 20-го века в Америке был разработан первый телевизор, собранный русским эмигрантом Владимиром Зворыкиным. Ему удалось разбить световой луч на синий, красный и зеленый цвета и получить цветное изображение. Свой образец он назвал «иконоскопом». Однако на Западе «отцом телевидения» считают шотландца Джона Лоджи Берда, который запатентовал устройство, создающее изображение из восьми линий.

4. Мобильный телефон

Первый телефон был продемонстрирован в конце XIX века, а первый мобильник появился в 70-х годах двадцатого столетия. Когда Мартин Купер - сотрудник компании Motorola из отдела по разработке портативных устройств показал коллегам килограммовую трубку, они не поверили в успех нового изобретения. Прогуливаясь по Манхеттену, он позвонил со своего «кирпича» Джоэлу Энгелу, начальнику отдела исследований компании-конкурента Bell Laboratories, и первым применил новые технологии на практике. За 15 лет до Купера советский ученый Леонид Куприянович тоже успешно проводил подобный эксперимент. Поэтому вопрос о том, кому принадлежит пальма первенства в сфере портативных устройств довольно спорный. Так или иначе, «мобильники» стали открытием 20 века, и уже прочно вошли в нашу жизнь.

5. Компьютер

Сегодня трудно представить себе жизнь без компьютера, ноутбука или планшета. А ведь еще недавно подобные устройства использовались исключительно в научных целях. В 1941-м году немец Конрад Цузе создал механическую вычислительную машину Z3, которая обладала всеми свойствами современного компьютера, но работала на основе телефонных реле. Через год американский физик Джон Атанасов и аспирант Клиффорд Берри начали разрабатывать первый электронный компьютер, но так и не завершили проект. В 1946-м эстафету продолжил Джон Мокли, и представил миру первый электронный компьютер ЭНИАК. Прошли десятилетия, прежде чем огромные машины, занимающие целые комнаты, превратились в компактные устройства. Первые персональные компьютеры появились только в конце 70-х годов прошлого столетия.

6. Интернет

Ругая любителей посидеть перед телевизором, мы забываем, что главная опасность - это Всемирная Паутина, Сеть, Матрица, вездесущий Интернет. Идея создать качественную и надежную связь, которую сложно прослушать, возникла в 50-е годы ХХ века. Во время Холодной войны Министерство обороны США использовало проект агентства ARPA для передачи данных на расстоянии без использования почты и телефона. Университеты Калифорнии, Санта-Барбары, Юты и Стэнфордский исследовательский центр разработали и воплотили в реальность сеть ARPAnet. В 1969-м году она связала компьютеры этих университетов, через 4 года присоединились и другие учреждения, а с изобретением E-mail количество желающих пообщаться в сети стало расти в геометрической прогрессии. В настоящее время в мире насчитывается уже 3 миллиарда пользователей интернета.

7. Видеомагнитофон

В 1944-м году русский инженер-связист Александр Михайлович Понятов основал в Америке компанию AMPEX, назвав её своими инициалами и добавив EX - сокращенное от «excellent» («превосходный»). Понятов занимался производством звукозаписывающей аппаратуры, но в начале 50-х сосредоточился на разработке видеозаписи. Он зафиксировал сигнал поперек ленты с помощью блока вращающихся головок, и 30 ноября 1956-го года в эфир вышли первые записанные новости CBS. А в 1960-м году его компания получила «Оскар» за выдающийся вклад в техническое оснащение индустрии кино и телевидения.

Больше 30 лет назад в СССР была популярна головоломка «Пентамино»: на клетчатом листе бумаги нужно было правильно сложить фигурные блоки из пяти квадратиков. С математической точки зрения такая головоломка считалась отличным тестом для компьютера. И научный сотрудник Вычислительного центра АН СССР Алексей Пажитнов написал программу для своей «Электроники 60». Из-за недостатка мощности пришлось убрать один кубик, и получилось «Тетрамино». Позже фигурки стали падать в «стакан». Так появился «Тетрис». Это была первая компьютерная игра из-за «Железного занавеса». И хотя с тех пор появилось много новых игрушек, «Тетрис» остается открытием 20 века и по-прежнему привлекает своей кажущейся простотой и реальной сложностью.

9. Электромобиль

В последней трети XIX века мир охватила настоящая «электрическая лихорадка». Многие изобретатели бились над созданием электромобиля. В маленьких городах пробег на одной зарядке в 60 км был вполне приемлем. К 1899 году инженер-энтузиаст Ипполит Романов создал несколько моделей электрических кэбов, а также электрический омнибус на 17 пассажиров. Им же была разработана схема городских маршрутов и получено разрешение на работу, правда, под личную ответственность. Тогда проект Ипполита Романова сочли коммерчески невыгодным. Однако его омнибус стал прародителем современного троллейбуса, появление которого несомненно относится к достижениям 20 века.

10. Парашют

Впервые идея создания парашюта пришла в голову Леонардо да Винчи. А спустя несколько веков, с появлением воздухоплавания, начались регулярные прыжки с воздушных шаров, к которым подвешивались полураскрытые парашюты. В 1912-м году американец Бэрри прыгнул с таким парашютом из самолета, и смог удачно приземлиться. А инженер Глеб Котельников сделал парашют из шелка и упаковал его в компактный ранец. Чтобы проверить, насколько быстро он раскроется, испытания проводились на движущемся автомобиле. Так был придуман тормозной парашют в качестве системы аварийного торможения. В преддверии Первой мировой войны ученый запатентовал свое изобретение во Франции, и оно стало достижением 20 века.

Прошлый век был полон судьбоносных открытий, и изобретения 20 века изменили жизнь многих поколений. Смотрите программу «Абсолютные гении» на телеканале Eureka HD, чтобы больше узнать о людях, перевернувших ход истории.