Лабораторная онлайн. Виртуальные лабораторные работы по физике

Наглядная физика предоставляет педагогу возможность находить наиболее интересные и эффективные методы обучения, делая занятия интересными и более насыщенными.

Главным преимуществом наглядной физики, является возможность демонстрации физических явлений в более широком ракурсе и всестороннее их исследование. Каждая работа охватывает большо й объем учебного материала, в том числе из разных разделов физики. Это предоставляет широкие возможности для закрепления межпредметных связей, для обобщения и систематизации теоретических знаний.

Интерактивные работы по физике следует проводить на уроках в форме практикума при объяснении нового материала или при завершении изучения определенной темы. Другой вариант – выполнение работ во внеурочное время, на факультативных, индивидуальных занятиях.

Виртуальная физика (или физика онлайн ) это новое уникальное направление в системе образования. Ни для кого не секрет, что 90% информация поступают к нам в мозг через зрительный нерв. И не удивительно, что пока человек сам не увидит, он не сможет четко уяснить природу тех или иных физических явлений. Поэтому процесс обучения обязательно должен подкрепляться наглядными материалами. И просто замечательно, когда можно не только увидеть статичную картинку изображающую какое-либо физическое явление, но и посмотреть на это явление в движении. Данный ресурс позволяет педагогам в легкой и непринужденной форме, наглядно показать не только действия основных законов физики, но и поможет провести онлайн лабораторные работы по физике по большинству разделов общеобразовательной программы. Так например, как можно на словах объяснить принцип действия p-n перехода? Только показав анимацию этого процесса ребенку, ему сразу всё становится понятным. Или можно наглядно показать процесс перехода электронов при трении стекла о шелк и после этого у ребенка уже будет меньше вопросов о природе этого явления. Помимо этого, наглядные пособия охватывают практически все разделы физики. Так например, хотите объяснить механику? Пожалуйста, тут вам анимации показывающие второй закон Ньютона, закон сохранения импульса при соударении тел, движение тел по окружности под действием сил тяжести и упругости и т.д. Хотите изучать раздел оптики, нет ничего проще! Наглядно показаны опыты по измерению длины световой волны с помощью дифракционной решетки, наблюдение сплошного и линейчатых спектров испускания, наблюдение интерференции и дифракции света и многие другие опыты. А как же электричество? И этому разделу уделено не мало наглядных пособий, так например есть опыты по изучению закона Ома для полной цепи, исследованию смешанного соединения проводников, электромагнитная индукция и т.д.

Таким образом процесс обучения из «обязаловки», к которой мы все с вами привыкли, превратится в игру. Ребенку будет интересно и весело разглядывать анимации физических явлений и это не только упростит, но и ускорит процесс обучения. Помимо всего прочего может удастся ребенку дать даже больше информации, чем он мог бы принять при обычной форме обучения. К тому же многие анимации могут полностью заменить те или иные лабораторные приборы , таким образом это идеально подходить для многих сельских школ, где к сожалению не всегда можно встретить даже электрометр Брауна. Да что там говорить, многих приборов нет даже в обычных школах крупных городов. Возможно введя такие наглядные пособия в обязательную программу образования, после окончания школы мы будем получать людей интересующихся физикой, которые в итоге станут молодыми учеными, некоторые из которых способны будут совершить великие открытия! Таким образом будет возрождена научная эра великих отечественных ученых и наша страна вновь, как и в советские времена, создаст уникальные технологии обгоняющие свое время. Поэтому я считаю надо популяризировать такие ресурсы как можно больше, сообщать о них не только педагогам, но и самим школьникам, ведь многим из них будет интересно изучить физические явления не только на уроках в школе, но и дома в свободное время и этот сайт дает им такую возможность! Физика онлайн это интересно, познавательно, наглядно и легко доступно!

Наглядная физика предоставляет педагогу возможность находить наиболее интересные и эффективные методы обучения, делая занятия интересными и более насыщенными.

Главным преимуществом наглядной физики, является возможность демонстрации физических явлений в более широком ракурсе и всестороннее их исследование. Каждая работа охватывает большо й объем учебного материала, в том числе из разных разделов физики. Это предоставляет широкие возможности для закрепления межпредметных связей, для обобщения и систематизации теоретических знаний.

Интерактивные работы по физике следует проводить на уроках в форме практикума при объяснении нового материала или при завершении изучения определенной темы. Другой вариант – выполнение работ во внеурочное время, на факультативных, индивидуальных занятиях.

Виртуальная физика (или физика онлайн ) это новое уникальное направление в системе образования. Ни для кого не секрет, что 90% информация поступают к нам в мозг через зрительный нерв. И не удивительно, что пока человек сам не увидит, он не сможет четко уяснить природу тех или иных физических явлений. Поэтому процесс обучения обязательно должен подкрепляться наглядными материалами. И просто замечательно, когда можно не только увидеть статичную картинку изображающую какое-либо физическое явление, но и посмотреть на это явление в движении. Данный ресурс позволяет педагогам в легкой и непринужденной форме, наглядно показать не только действия основных законов физики, но и поможет провести онлайн лабораторные работы по физике по большинству разделов общеобразовательной программы. Так например, как можно на словах объяснить принцип действия p-n перехода? Только показав анимацию этого процесса ребенку, ему сразу всё становится понятным. Или можно наглядно показать процесс перехода электронов при трении стекла о шелк и после этого у ребенка уже будет меньше вопросов о природе этого явления. Помимо этого, наглядные пособия охватывают практически все разделы физики. Так например, хотите объяснить механику? Пожалуйста, тут вам анимации показывающие второй закон Ньютона, закон сохранения импульса при соударении тел, движение тел по окружности под действием сил тяжести и упругости и т.д. Хотите изучать раздел оптики, нет ничего проще! Наглядно показаны опыты по измерению длины световой волны с помощью дифракционной решетки, наблюдение сплошного и линейчатых спектров испускания, наблюдение интерференции и дифракции света и многие другие опыты. А как же электричество? И этому разделу уделено не мало наглядных пособий, так например есть опыты по изучению закона Ома для полной цепи, исследованию смешанного соединения проводников, электромагнитная индукция и т.д.

Таким образом процесс обучения из «обязаловки», к которой мы все с вами привыкли, превратится в игру. Ребенку будет интересно и весело разглядывать анимации физических явлений и это не только упростит, но и ускорит процесс обучения. Помимо всего прочего может удастся ребенку дать даже больше информации, чем он мог бы принять при обычной форме обучения. К тому же многие анимации могут полностью заменить те или иные лабораторные приборы , таким образом это идеально подходить для многих сельских школ, где к сожалению не всегда можно встретить даже электрометр Брауна. Да что там говорить, многих приборов нет даже в обычных школах крупных городов. Возможно введя такие наглядные пособия в обязательную программу образования, после окончания школы мы будем получать людей интересующихся физикой, которые в итоге станут молодыми учеными, некоторые из которых способны будут совершить великие открытия! Таким образом будет возрождена научная эра великих отечественных ученых и наша страна вновь, как и в советские времена, создаст уникальные технологии обгоняющие свое время. Поэтому я считаю надо популяризировать такие ресурсы как можно больше, сообщать о них не только педагогам, но и самим школьникам, ведь многим из них будет интересно изучить физические явления не только на уроках в школе, но и дома в свободное время и этот сайт дает им такую возможность! Физика онлайн это интересно, познавательно, наглядно и легко доступно!

ОРГАНИЗАЦИЯ ИЗУЧЕНИЯ КУРСА ФИЗИКИ

В соответствии с Рабочей программой дисциплины «Физика» студенты очной формы обучения изучают курс физики в течение первых трех семестров:

Часть 1: Механика и молекулярная физика (1 семестр).
Часть 2: Электричество и магнетизм (2 семестр).
Часть 3: Оптика и атомная физика (3 семестр).

При изучении каждой части курса физики предусматриваются следующие виды работ:

  1. Теоретическое изучение курса (лекции).
  2. Упражнения по решению задач (практические занятия).
  3. Выполнение и защита лабораторных работ.
  4. Самостоятельное решение задач (домашние задания).
  5. Контрольные работы.
  6. Зачет.
  7. Консультации.
  8. Экзамен.


Теоретическое изучение курса физики.


Теоретическое изучение физики проводится на поточных лекциях, читаемых в соответствии с Программой курса физики. Лекции читаются по расписанию кафедры. Посещение лекций для студентов обязательно.

Для самостоятельного изучения дисциплины студенты могут воспользоваться списком основной и дополнительной учебной литературы, рекомендованной для соответствующей части курса физики, или учебными пособиями, подготовленными и изданными сотрудниками кафедры. Учебные пособия по всем частям курса физики имеются в открытом доступе на сайте кафедры.


Практические занятия

Параллельно с изучением теоретического материала студент обязан освоить методы решения задач по всем разделам физики на практических занятиях (семинарах). Посещение практических занятий обязательно. Семинары проводятся в соответствии с расписанием кафедры. Контроль текущей успеваемости студентов осуществляется преподавателем, ведущим практические занятия по следующим показателям:

  • посещаемости практических занятий;
  • эффективности работы студента в аудитории;
  • полноте выполнения домашних заданий;
  • результатам двух аудиторных контрольных работ;

Для самостоятельной подготовки студенты могут воспользоваться учебными пособиями по решению задач, подготовленными и изданными сотрудниками кафедры. Учебные пособия по решению задач по всем частям курса физики имеются в открытом доступе на сайте кафедры.


Лабораторные работы

Лабораторные работы имеют целью ознакомить студента с измерительной аппаратурой и методами физических измерений, проиллюстрировать основные физические законы. Лабораторные работы выполняются в учебных лабораториях кафедры физики по описаниям, подготовленным преподавателями кафедры (имеются в открытом доступе на сайте кафедры), и согласно расписанию кафедры.

В каждом семестре студент должен выполнить и защитить 4 лабораторные работы.

На первом занятии преподаватель проводит инструктаж по технике безопасности, сообщает каждому студенту индивидуальный перечень лабораторных работ. Студент выполняет первую лабораторную работу, заносит результаты измерений в таблицу и делает соответствующие вычисления. Итоговый отчет о лабораторной работе студент должен подготовить дома. При подготовке отчета необходимо воспользоваться учебно-методической разработкой «Введение в теорию измерений» и «Методическими указаниями для студентов по оформлению лабораторных работ и расчету ошибок измерений» (имеются в открытом доступе на сайте кафедры).

К следующему занятию студент обязан предъявить полностью оформленную первую лабораторную работу и подготовить конспект следующей работы из своего перечня. Конспект должен соответствовать требованиям к оформлению лабораторной работы, включать в себя теоретическое введение и таблицу, куда будут заноситься результаты предстоящих измерений. В случае невыполнения этих требований к выполнению следующей лабораторной работы студент не допускается.

На каждом занятии, начиная со второго, студент защищает предыдущую полностью оформленную лабораторную работу. Защита заключается в объяснении полученных экспериментальных результатов и ответе на контрольные вопросы, приведенные в описании. Лабораторная работа считается полностью выполненной при наличии подписи преподавателя в тетради и соответствующей отметки в журнале.

После выполнения и защиты всех лабораторных работ, предусмотренных учебным планом, преподаватель, ведущий занятия, ставит отметку «зачет» в лабораторном журнале.

Если по какой-либо причине студент не смог выполнить учебный план по лабораторному физическому практикуму, то это можно сделать на дополнительных занятиях, которые проводятся по расписанию кафедры.

Для подготовки к занятиям студенты могут воспользоваться методическими рекомендациями по выполнению лабораторных работ, имеющимися в открытом доступе на сайте кафедры.

Контрольные работы

Для текущего контроля успеваемости студента в каждом семестре на практических занятиях (семинарах) проводится две аудиторные контрольные работы. В соответствии с балльно ‑ рейтинговой системой кафедры каждая контрольная работа оценивается из расчета 30 баллов. Полная сумма баллов набранных студентом при выполнении контрольных работ (максимальная сумма за две контрольные работы равна 60), используется для формирования рейтинга студента и учитывается при выставлении итоговой оценки по дисциплине «Физика».


Зачет

Зачёт по физике студент получает при условии, что выполнены и защищены 4 лабораторные работы (в лабораторном журнале имеется отметка о выполнении лабораторных работ) и сумма балов текущего контроля успеваемости больше или равна 30. Зачёт в зачётную книжку и ведомость проставляет преподаватель, ведущий практические занятия (семинары).

Экзамен

Экзамен проводится по билетам, утвержденным на кафедре. В каждый билет включены два теоретических вопроса и задача. Для облегчения подготовки студент может воспользоваться списком вопросов для подготовки к экзамену, на основании которых сформированы билеты. Список вопросов экзамена имеется в открытом доступе на сайте кафедры физики.

  1. полностью выполнены и защищены 4 лабораторные работы (в лабораторном журнале имеется отметка о зачете по лабораторным работам);
  2. общая сумма баллов текущего контроля успеваемости за 2 контрольные работы больше или равна 30 (из 60 возможных);
  3. отметка "зачтено" проставлена в зачётной книжке и зачётной ведомости

При невыполнении п. 1 студент имеет право участвовать в дополнительных занятиях по лабораторному практикуму, которые проводятся по расписанию кафедры. При выполнении п. 1 и невыполнении п. 2 студент имеет право набрать недостающие баллы на зачётных комиссиях, которые проводятся в период сессии по расписанию кафедры. Студенты, набравшие при текущем контроле успеваемости 30 баллов и более, на экзаменационную комиссию для увеличения рейтингового балла не допускаются.

Максимальная сумма баллов, которую может набрать студент при текущем контроле успеваемости, равна 60. При этом максимальная сумма баллов за одну контрольную 30 (за две контрольные 60).

Студенту, посетившему все практические занятия и активно на них работавшему, преподаватель имеет право добавить не более 5 баллов (полная сумма баллов текущего контроля успеваемости, при этом, не должна превышать 60 баллов).

Максимальная сумма баллов, которую может набрать студент по результатам экзамена равна 40 баллов.

Итоговая сумма баллов, набранная студентом за семестр, является основой для выставления оценки по дисциплине «Физика» в соответствии со следующими критериями:

  • если сумма баллов текущего контроля успеваемости и промежуточной аттестации (экзамена) менее 60 баллов, то ставится оценка «неудовлетворительно» ;
  • 60 до 74 баллов, то ставится оценка «удовлетворительно» ;
  • если сумма баллов текущего контроля успеваемости и промежуточной аттестации (экзамена) попадает в диапазон от 75 до 89 баллов, то ставится оценка «хорошо» ;
  • если сумма баллов текущего контроля успеваемости и промежуточной аттестации (экзамена) попадает в диапазон от 90 до 100 баллов, то ставится оценка «отлично».

Оценки «отлично», «хорошо», «удовлетворительно» выставляются в экзаменационную ведомость и зачётную книжку. Оценка «неудовлетворительно» выставляется только в ведомость.

ЛАБОРАТОРНЫЙ ПРАКТИКУМ

Ссылки для скачивания лабораторных работ *
*Чтобы скачать файл, нажмите на ссылку правой кнопкой мыши и выберите пункт "Сохранить объект как..."
Для чтения файла необходимо скачать и установить программу Adobe Reader



Часть 1. Механика и молекулярная физика


























Часть 2. Электричество и магнетизм



















Часть 3. Оптика и атомная физика














Мировое образование и научный процесс меняются настолько явно в последние годы, но почему-то больше говорят не о прорывных инновациях и возможностях, которые они открывают, а о локальных экзаменационных скандалах. А между тем суть образовательного процесса красиво отражает английская пословица «Можно привести лошадь к водопою, но нельзя заставить ее напиться».

Современное образование, в сущности, живет двойной жизнью. В его официальной жизни есть программа, предписания, экзамены, «бессмысленная и беспощадная» битва за состав предметов в школьном курсе, вектор официальной позиции и качество обучения. А в его реальной жизни, как правило, сосредоточивается все то, что и представляет собой современное образование: дигитализация, eLearning , Mobile Learning , обучение через Coursera , UoPeople и другие онлайн-институции, вебинары , виртуальные лаборатории и т. п. Все это пока не стало частью общепринятой глобальной образовательной парадигмы, но локально дигитализация образования и исследовательской работы уже происходит.

MOOC -обучение (Massive Open Online Courses , массовые лекции из открытых источников) прекрасно для передачи на уроках и лекциях идей, формул и других теоретических знаний. Но для полноты освоения многих дисциплин нужны и практические занятия - цифровое обучение «почувствовало» эту эволюционную необходимость и создало новую «форму жизни» - виртуальные лаборатории , свои для школьного и университетского обучения.

Известная проблема eLearning : в основном преподаются теоретические дисциплины. Возможно, следующим этапом развития онлайн образования станет охват практических областей. И происходить это будет по двум направлениям: первое - договорное делегирование практики физически существующим вузам (в случае с медициной, например), а второе - развитие виртуальных лабораторий на разных языках.

Зачем нужны виртуальные лаборатории, или виртулабы?

  • Для подготовки к реальным лабораторным работам.
  • Для школьных занятий, если отсутствуют соответствующие условия, материалы, реактивы и оборудование.
  • Для дистанционного обучения.
  • Для самостоятельного изучения дисциплин во взрослом возрасте или вместе с детьми, поскольку многие взрослые по тем или иным причинам испытывают потребность «вспомнить» то, что так и не было выучено или понято в школе.
  • Для научной работы.
  • Для высшего образования с важной практической составляющей.

Разновидности виртулабов . Виртуальные лаборатории могут быть двухмерными и 3D ; простейшими для младших школьников и сложными, практическими для учеников средней и старшей школы, студентов и преподавателей. Свои виртулабы разработаны для разных дисциплин. Чаще всего это физика и химия, но бывают и довольно оригинальные, например, виртулаб для экологов.

Собственные виртуальные лаборатории есть у особенно серьезных вузов, например, у Самарского государственного аэрокосмического университета имени академика С. П. Королева и берлинского Института истории науки Макса Планка (Max Planck Institute for the History of Science , MPIWG ). Напомним, Макс Планк - немецкий физик-теоретик, основоположник квантовой физики. У виртуальной лаборатории института даже существует официальный сайт . По этой ссылке можно посмотреть презентацию The Virtual Laboratory: Tools for Research on the History of Experimentalization. Онлайн лаборатория представляет собой платформу, где историки публикуют и обсуждают свои исследования по теме экспериментаторства в разных областях науки (от физики до медицины), искусства, архитектуры, медиа и технологий. Здесь также собраны иллюстрации и тексты по разным аспектам экспериментаторской деятельности: инструментарий, ход экспериментов, фильмы, фото ученых и т. д. Студенты могут завести в этом виртулабе свой аккаунт и добавлять научные работы для обсуждения.

Виртуальная лаборатория Института истории науки Макса Планка

Виртулаб-портал

Выбор русскоязычных виртулабов, к сожалению, пока невелик, но это вопрос времени. Распространение eLearning среди учеников и студентов, массовое проникновение дигитализации в учебные заведения так или иначе создадут спрос, тогда и начнут массово разрабатывать красивые современные виртулабы по разнообразным дисциплинам. К счастью, уже сейчас есть довольно развитый специализированный портал, посвященный виртуальным лабораториям, - Virtulab.Net . Он предлагает достаточно симпатичные решения и охватывает четыре дисциплины: физику, химию, биологию и экологию.

Виртуальная лаборатория 3D по физике Virtulab .Net

Виртуальная инженерная практика

Virtulab.Net пока не указывает инженерию среди своих специализаций, но сообщает, что размещенные там виртулабы по физике могут быть полезны и в дистанционном инженерном образовании. Ведь, например, для построения математических моделей необходимо глубокое понимание физической природы объектов моделирования. Вообще у инженерных виртулабов огромный потенциал. Инженерное обучение в большой мере ориентировано на практику, но в вузах такие виртуальные лаборатории пока применяют редко из-за того, что неразвит сам рынок цифрового обучения в инженерной области.

Проблемно-ориентированные учебные комплексы системы КАДИС (СГАУ) . В Самарском аэрокосмическом университете имени Королева для усиления подготовки технических специалистов разработали собственный инженерный виртулаб. Центр новых информационных технологий (ЦНИТ) СГАУ создал «Проблемно-ориентированные учебные комплексы системы КАДИС». Аббревиатура КАДИС расшифровывается как «система Комплексов Автоматизированных ДИдактических средств». Это специальные учебные кабинеты, где проходят виртуальные лабораторные практикумы по сопротивлению материалов, механике конструкций, методам оптимизации и геометрического моделирования, конструкции самолетов, материаловедению и термообработке и другим техническим дисциплинам. Часть этих практикумов находится в свободном доступе на сервере ЦНИТ СГАУ. В виртуальных учебных кабинетах размещены описания технических объектов с фотографиями, схемами, ссылками, рисунками, видео, аудио и flash-анимации с лупой для рассмотрения мелких деталей виртуального агрегата. Предусмотрена также возможность самоконтроля и тренинга. Вот что представляют собой комплексы виртуальной системы КАДИС :

  • Балка - комплекс по анализу и построению эпюр балок в курсе сопротивления материалов (машиностроение, строительство).
  • Структура - комплекс по методам проектирования силовых схем механических конструкций (машиностроение, строительство).
  • Оптимизация - комплекс по математическим методам оптимизации (курсы по САПР в машиностроении, строительстве).
  • Сплайн - комплекс по методам интерполяции и аппроксимации в геометрическом моделировании (курсы по САПР).
  • Двутавр - комплекс по изучению закономерностей силовой работы тонкостенных конструкций (машиностроение, строительство).
  • Химик - набор комплексов по химии (для средней школы, профильных лицеев, подготовительных курсов вузов).
  • Органик - комплексы по органической химии (для вузов).
  • Полимер - комплексы по химии высокомолекулярных соединений (для вузов).
  • Конструктор Молекул - программа-тренажер «Конструктор молекул».
  • Математика - комплекс по элементарной математике (для абитуриентов вузов).
  • Физвоспитание - комплекс для поддержки теоретических курсов по физическому воспитанию.
  • Металловед - комплекс по металловедению и термообработке (для вузов и техникумов).
  • Зуброл - комплекс по теории механизмов и деталям машин (для вузов и техникумов).

Виртуальные приборы на Zapisnyh.Narod.Ru . Очень полезным в инженерном образовании будет сайт Zapisnyh.Narod.Ru , где можно условно бесплатно скачать виртуальные приборы на Sound Card, открывающие широкие возможности для создания техники. Они наверняка заинтересуют преподавателей и пригодятся на лекциях, в научной работе и в лабораторных практикумах по естественным и техническим дисциплинам. Спектр виртуальных приборов, выложенных на сайте, впечатляющий:

  • комбинированный генератор НЧ;
  • двухфазный генератор НЧ;
  • осциллограф-регистратор;
  • осциллограф;
  • частотомер;
  • АЧ характериограф;
  • технограф;
  • электросчетчик;
  • измеритель R, C, L;
  • домашний электрокардиограф;
  • прибор для оценки емкости и ESR;
  • хроматографические системы ХромПроцессор-7-7М-8;
  • прибор для поверки и диагностики неисправностей кварцевых часов и др.

Один из виртуальных инженерных приборов с сайта Zapisnyh.Narod.Ru

Виртулабы по физике

Экологический виртулаб на Virtulab .Net . Экологическая лаборатория портала затрагивает как общие вопросы развития Земли, так и отдельные законы.