Атомное ядро: состав, характеристики, модели, ядерные силы. Масса

Все, наверное, помнят со школы, что атомы, а тем более - атомные ядра, настолько маленькие, что их не увидеть и не пощупать. Из этого может сложиться впечатление, что раз эти размеры относятся к микромиру, то и определить их можно только с помощью очень сложных физических экспериментов. Но это вовсе не так. Существуют вполне макроскопические и даже повседневные явления, которые позволяют оценить эти размеры хотя бы по порядку величины. В одной из задач мы уже выясняли, как можно прикинуть размер атома, исходя из известных термодинамических характеристик вещества. Обратимся теперь к атомному ядру.

Ядра, конечно, изучать труднее, чем сами атомы. В формировании свойств материи они играют довольно-таки второстепенную роль. Они придают веществу массивность, держат около себя электроны, но сами ядра непосредственно друг с другом не взаимодействуют. Так получается потому, что они очень маленькие, намного меньше самих атомов (рис. 1). И по этой причине определить их размер труднее, чем размер атомов.

В этой задаче, однако, для оценки размера ядра мы воспользуемся одной подсказкой, которую нам предоставляет природа, - явлением радиоактивности.

Известно, что в ходе некоторых ядерных превращений из ядер вылетают нейтроны. В отличие от протонов или электронов, нейтроны электрически не заряжены. В своем полете сквозь вещество они практически не чувствуют электронные оболочки атомов. Они пролетают один атом за другим насквозь, не отклоняясь от своей траектории, пока не столкнутся лоб в лоб с каким-нибудь ядром вещества. Для простоты мы будем считать, что каждый быстрый нейтрон, врезающийся в ядро, вызывает какое-то существенное взаимодействие: это может быть поглощение, упругое рассеяние или какое-нибудь изменение внутри ядра.

Такое «наплевательское отношение» нейтронов к электромагнитным взаимодействиям приводит к тому, что нейтронный поток обладает высокой проникающей способностью (рис. 2). Длина свободного пробега нейтрона (то есть расстояние между отдельными актами столкновений) может быть довольно большой, намного больше, чем для электронов или рентгеновского излучения. Самое важное для нас тут то, что эта длина измеряется напрямую в простейшем лабораторном опыте по экранированию нейтронного потока пластинками разной толщины. Результаты получаются такие: для быстрых нейтронов с энергией порядка 1 МэВ длина свободного пробега в твердом веществе, например алюминии, составляет около 10 см - вполне макроскопический размер.

Задача

Опираясь на приведенные выше числа и рассуждения, оцените по порядку величины размер атомного ядра алюминия.

Подсказка 1

Нарисуйте схематично несколько атомов, плотно прижавшихся друг к другу своими электронными оболочками. Отметьте внутри них атомные ядра, не забывая о том, что они очень маленькие. Нейтроны не обращают внимание на электронные оболочки, для них сплошное вещество - это как бы очень разреженный и почти неподвижный «газ» из атомных ядер. С учетом этого нарисуйте прямую траекторию нейтрона и попытайтесь понять, как длина свободного пробега связана с размером ядра.

Подсказка 2

Вообще-то формула для связи длины свободного пробега с параметрами среды нам уже встречалась в задаче Столкновение фотонов . Там мы говорили про сечение рассеяния фотонов друг на друге, и это была довольно абстрактная величина. Сейчас всё проще: мы считаем, что сечение рассеяния для нейтрон-ядерного столкновения просто совпадает с геометрическим сечением системы «ядро + нейтрон».

Решение

На рис. 3 в очень упрощенном виде показано сплошное вещество с точки зрения заряженных частиц или фотонов, а также с точки зрения нейтрона. Нейтрон практически «не видит» электроны, для него существуют только атомные ядра. Радиус ядра мы обозначим через R , а характерное расстояние между ними - через a . Обратите внимание, что a - это типичное межатомное расстояние, оно много больше размера ядра R . Сам нейтрон мы для простейших оценок будем считать точечным. При желании оценку можно уточнить, связав размер нейтрона с размером ядра и его массовым числом. Однако оценку по порядку величины это уточнение не изменит.

Связь между длиной свободного пробега L , сечением столкновения σ и концентрацией ядер n уже подробно обсуждалась в решении задачи про столкновение фотонов . Записывается она просто: Lσn = 1. В нашем случае сечение столкновения - это просто поперечное сечение ядра, σ = πR 2 , а концентрация выражается через расстояние между ядрами, n = 1/a 3 . Подставив эти выражения, мы получаем ответ для оценки радиуса ядра:

Межатомное расстояние a - это для сплошного вещества просто размер атомов, то есть несколько ангстрем. Для более точной оценки можно вычислить концентрацию ядер через плотность вещества и массу ядра; для алюминия это даст a = 2,5 Å. Взяв L = 0,1 м, получим R ≈ 7·10 −15 м .

Найденное значение примерно вдвое превышает реальный радиус ядра алюминия. Это совершенно приемлемая точность для столь простой оценки по порядку величины.

Послесловие

Эта задача может послужить вступлением для самых разных рассказов о том, как нейтроны или, более широко, отдельные элементарные частицы, взаимодействуют с веществом . Мы здесь ограничимся только несколькими самыми общими набросками.

Во-первых, надо сразу сказать, что в реальном эксперименте размеры ядер измеряются совсем не такими методами. Самый стандартный способ - это улучшенная разновидность классического опыта Резерфорда : размер ядра можно узнать по тому, как на нем рассеиваются заряженные частицы. Но тут есть любопытный момент: оказывается, у ядра может быть несколько разных размеров: протонный радиус, материальный радиус, зарядовый радиус и т.д. В отдельных случаях, например для ядер с нейтронным гало, эти размеры могут существенно различаться. Поэтому современная экспериментальная физика использует сразу несколько разных методов для измерения размеров и изучения структуры ядер (см. введение в эту область физики в нашей новости Оптические исследования помогают изучать ядра с нейтронным гало).

В этой задаче мы для простоты считали, что сечение рассеяния нейтрона на ядре чисто геометрическое: столкновение происходит, если траектория нейтрона попадает строго в ядро. На самом деле в микромире, который описывается квантовыми законами, ситуация может сильно отличаться от этого предположения. Более того, это отличие сильно зависит от энергии нейтронов (рис. 5). Так, при энергиях около 1 МэВ сечение рассеяния обычно составляет несколько

Ну и наконец, нейтроны открывают бесчисленные возможности не только для фундаментальной физики , но и для прикладных исследований. Не пытаясь даже перечислить все конкретные области применения, просто упомянем индустриальную диагностику устройств, внутрь которых не заглянешь другими методами (рис. 6), материаловедение, биомедицинские науки вкупе с фармакологией, геофизику. Все эти применения так или иначе опираются на высокую проникающую способность нейтронов в веществе.

Ядром называется центральная часть атома, в которой сосредоточенна практически вся масса и его положительный заряд. Атомное ядро состоит из элементарных частиц – протонов и нейтронов (протонно-нейтронная модель была предложена сов. физиком Иваненко, а в последствии развита Гейзенбергом). Ядро атома характеризуется зарядом. Зарядом ядра является величина , где е – заряд протона, Z – порядковый номер химического элемента в периодической системе, равный числу протонов в ядре. Число нуклонов в ядре А=N+Z называется массовым числом, где N-число нейтронов в ядре.

Ядра с одинаковыми Z, но различными А называются изотопами. Ядра которые при одинаковом А имеют различные Z,называются изобарами. Ядро хим. элемента Х обозначается

Где Х - символ хим. элемента. Размер ядра характеризуется радиусом ядра. Эмпирическая формула для радиуса ядра , где м, может быть истолкована как пропорциональность объёма ядра числу нуклонов в нем. Плотность для ядерного вещества составляет по порядку величины и постоянна для всех ядер. Масса ядра меньше, чем сумма масс составляющих его нуклонов и этот дефект массы определяется по следующей формуле . Точно массу ядра можно определить с помощью масс-спектрометров. Нуклоны в атоме являются фермионами и имеют спин . Ядро атома имеет собственный момент импульса – спин ядра, равный ,где I – внутреннее (полное) спиновое квантовое число.

Число I принимает целочисленные или полуцелые значения и т.д. Ядерные частицы имеют собственные магнитные моменты, которыми определяется магнитный момент ядра в целом. Единицей магнитных моментов ядер служит ядерный магнетон : , где е – абсолютное значение заряда электрона, - масса протона. Между спином ядра , выраженным в , и его магнитным моментом имеется соотношение , где - ядерное гиромагнитное отношение. Распределение электрического заряда протонов по ядру в общем случае несиметрично. Мерой отклонения этого распределения от сферически-симметричного является квадрупольный электрический момент Q ядра. Если плотность заряда считается везде одинаковой, то Q определяется только формой ядра. Так для ядра, имеющего форму эллипсоида вращения, , где b – полуось эллипсоида вдоль направления спина; а – полуось в перпендикулярном направлении. Для ядра, вытянутого вдоль направления спина, b>a и Q>0. Для ядра сплющенного в этом направлении, b

Между составляющими ядро нуклонами действуют особые, специфические для ядра силы, значительно превышающие кулоновские силы отталкивания между протонами. Они называются ядерными силами. Ядерные относятся к классу так называемых сильных взаимодействий. Основные свойства ядерных сил:

1. яд. силы являются силами притяжения;

2. яд. силы являются короткодействующими;

3. яд. силам свойственна зарядовая независимость: ядерные силы, действующие между двумя протонами, или протоном и нейтроном, одинаковы по величине, т.е. ядерные силы имеют не эл. природу;

4. яд. силам свойственно насыщение, т.е. каждый нуклон в ядре взаимодействует только с ограниченным числом ближайших к нему нуклонов;

5. яд. силы зависят от взаимной ориентации спинов взаимодействующих нуклонов;

6. яд. силы не являются центральными.

Модели ядра.

1.Капельная модель ядра является первой моделью. Она основана на аналогии между поведением нуклонов в ядре и поведением молекул в капле жидкости. Так, в обоих случаях силы, действующие между составными частицами – молекулами в жидкости и нуклонами в ядре, - являются короткодействующими и им свойственно насыщение. Для капли жидкости при данных внешних условиях характерна постоянная плотность её вещества. Ядра же характеризуются практически постоянной удельной энергией связи и постоянной плотностью, не зависимо от числа нуклонов в ядре. Объём капли и объём ядра пропорциональны числу частиц. Существенное отличие ядра от капли жидкости в этой модели закл. в том, что она трактует ядро как каплю эл. Заряженной несжимаемой жидкости, подчиняющуюся законам квантовой механики. Капельная модель ядра, объяснила механизм ядерных реакций деления ядер, но не смогла объяснить повышенную устойчивость ядер, содержащих магические числа протонов и нейтронов.

2.Оболочечная модель ядра предполагает распределение нуклонов в ядре по дискретным эн. уровням, заполняемым по принципу Паули, и связывает устойчивость ядер с заполнением этих уровней. Считается, что ядра с полностью заполненными оболочками являются наиболее устойчивыми. Оболочечная модель ядра позволила объяснить спины и магнитные моменты ядер, различную устойчивость атомных ядер, а также для описания лёгких и средних ядер, а также для ядер, находящимся в основном состоянии. По мере дальнейшего накопления экспериментальных данных о свойствах атомных ядер появлялись все новые факты, не укладывающиеся в рамки описанных моделей. Так возникли обобщённая модель ядра, оптическая модель ядра и т.д.

Ядерные реакции.

Ядерными реакциями называются превращения атомных ядер, вызванные взаимодействием их друг с другом или с элементарными частицами.

Как правило, в ядерных реакциях участвуют два ядра и две частицы. Одна пара ядро-частица является исходной, другая пара - конечной.

Размеры ядер.

Размеры ядер зависят от числа содержащихся в них нуклонов. Средняя плотность числа р нуклонов в ядре (их число в единице объёма) для всех многонуклонных ядер (A > 0) практически одинакова. Это означает, что объём ядра пропорционален числу нуклонов А, а его линейный размер ~А1/3. Эффективный радиус ядра R определяется соотношением:

R = а A1/3, (2)

где константа а близка к Гц, но отличается от него и зависит от того, в каких физических явлениях измеряется R. В случае так называемого зарядового радиуса ядра, измеряемого по рассеянию электронов на ядрах или по положению энергетических уровней m-мезоатомов: а = 1,12 ф. Эффективный радиус, определённый из процессов взаимодействия адронов (нуклонов, мезонов, a-частиц и др.) с ядрами, несколько больше зарядового: от 1,2 ф до 1,4 ф.

Плотность ядерного вещества фантастически велика сравнительно с плотностью обычных веществ: она равна примерно 1014 г/см3. В ядре r почти постоянно в центральной части и экспоненциально убывает к периферии. Для приближённого описания эмпирических данных иногда принимают следующую зависимость r от расстояния r от центра ядра:

Эффективный радиус ядра R равен при этом R0 + b. Величина b характеризует размытость границы ядра, она почти одинакова для всех ядер (» 0,5 ф). Параметр r0 - удвоенная плотность на «границе» ядра, определяется из условия нормировки (равенства объёмного интеграла от р числу нуклонов А). Из (2) следует, что размеры ядер варьируются по порядку величины от 10-13 см до 10-12 см для тяжёлых ядер (размер атома ~ 10-8 см). Однако формула (2) описывает рост линейных размеров ядер с увеличением числа нуклонов лишь огрублённо, при значительном увеличении А. Изменение же размера ядра в случае присоединения к нему одного или двух нуклонов зависит от деталей структуры ядра и может быть иррегулярным. В частности (как показали измерения изотопического сдвига атомных уровней энергии), иногда радиус ядра при добавлении двух нейтронов даже уменьшается.

Энергия связи и масса ядра.

Энергией связи ядра xсв называется энергия, которую необходимо затратить на расщепление ядра на отдельные нуклоны. Она равна разности суммы масс входящих в него нуклонов и массы ядра, умноженной на c2:

xсв = (Zmp + Nmn - М) c2. (4)

Здесь mp, mn и M - массы протона, нейтрона и ядра. Замечательной особенностью ядер является тот факт, что xсв приблизительно пропорциональна числу нуклонов, так что удельная энергия связи xсв/А слабо меняется при изменении А (для большинства ядер xсв/А » 6-8 Мэв). Это свойство, называемое насыщением ядерных сил, означает, что каждый нуклон эффективно связывается не со всеми нуклонами ядра (в этом случае энергия связи была бы пропорциональна A2 при A»1), а лишь с некоторыми из них. Теоретически это возможно, если силы при измененном расстоянии изменяют знак (притяжение на одних расстояниях сменяется отталкиванием на других). Объяснить эффект насыщения ядерных сил, исходя из имеющихся данных о потенциале взаимодействия двух нуклонов, пока не удалось (известно около 50 вариантов ядерного межнуклонного потенциала, удовлетворительно описывающих свойства дейтрона и рассеяние нуклона на нуклоне; ни один из них не может описать эффект насыщения ядерных сил в многонуклонных ядрах).

Независимость плотности р и удельной энергии связи ядер от числа нуклонов А создаёт предпосылки для введения понятия ядерной материи (безграничного ядра). Физическими объектами, отвечающими этому понятию, могут быть не только макроскопические космические тела, обладающие ядерной плотностью (например, нейтронные звёзды), но, в определённом аспекте, и обычные ядра с достаточно большими А.

Здесь первое (и наибольшее) слагаемое определяет линейную зависимость xсв от A; второй член, уменьшающий xсв, обусловлен тем, что часть нуклонов находится на поверхности ядра. Третье слагаемое - энергия электростатического (кулоновского) отталкивания протонов (обратно пропорциональна радиусу ядра и прямо пропорциональна квадрату его заряда). Четвёртый член учитывает влияние на энергию связи неравенства числа протонов и нейтронов в ядре, пятое слагаемое d(A, Z) зависит от чётности чисел А и Z; оно равно:

Эта сравнительно небольшая поправка оказывается, однако, весьма существенной для ряда явлений и, в частности, для процесса деления тяжёлых ядер. Именно она определяет делимость ядер нечётных по А изотопов урана под действием медленных нейтронов, что и обусловливает выделенную роль этих изотопов в ядерной энергетике. Все константы, входящие в формулу (5), подбираются так, чтобы наилучшим образом удовлетворить эмпирическим данным. Оптимальное согласие с опытом достигается при e = 14,03 Мэв, a = 13,03 Мэв, b = 0,5835 Мэв, g= 77,25 Мэв. Формулы (5) и (6) могут быть использованы для оценки энергий связи ядер, не слишком удалённых от полосы стабильности ядер. Последняя определяется положением максимума xсв как функции Z при фиксированном А. Это условие определяет связь между Z и А для стабильных ядер:

Z=A (1,98+0,15A2/3)-1 (7)

Формулы типа (5) не учитывают квантовых эффектов, связанных с деталями структуры ядер, которые могут приводить к скачкообразным изменениям xсв вблизи некоторых значений А и Z (см. ниже).

Структурные особенности в зависимости xсв от A и Z могут сказаться весьма существенно в вопросе о предельном возможном значении Z, т. е. о границе периодической системы элементов. Эта граница обусловлена неустойчивостью тяжёлых ядер относительно процесса деления. Теоретические оценки вероятности спонтанного деления ядер не исключают возможности существования «островов стабильности» сверхтяжёлых ядер вблизи Z = 114 и Z = 126.

Квантовые характеристики ядер.

Я. а. может находиться в разных квантовых состояниях, отличающихся друг от друга значением энергии и других сохраняющихся во времени физических величин. Состояние с наименьшей возможной для данного ядра энергией называется основным, все остальные - возбуждёнными. К числу важнейших квантовых характеристик ядерного состояния относятся спин I и чётность Р. Спин I - целое число у ядер с чётным А и полуцелое при нечётном. Чётность состояния Р = ± 1 указывает на изменение знака волновой функции ядра при зеркальном отображении пространства. Эти две характеристики часто объединяют единым символом IP или I±. Имеет место следующее эмпирическое правило: для основных состояний ядер с чётными А и Z спин равен 0, а волновая функция чётная (IP = 0+). Квантовое состояние системы имеет определённую чётность Р, если система зеркально симметрична (т. е. переходит сама в себя при зеркальном отражении). В ядрах зеркальная симметрия несколько нарушена из-за наличия слабого взаимодействия между нуклонами, не сохраняющего чётность (его интенсивность по порядку величины ~ 10-5% от основных сил, связывающих нуклоны в ядрах). Однако обусловленное слабым взаимодействием смешивание состояний с разной чётностью мало и практически не сказывается на структуре ядер.

Исследуя прохождение α-частицы через тонкую золотую фольгу (см. п. 6.2), Э. Резерфорд пришёл к выводу о том, что атом состоит из тяжёлого положительного заряженного ядра и окружающих его электронов.

Ядром называется центральная часть атома , в которой сосредоточена практически вся масса атома и его положительный заряд .

В состав атомного ядра входят элементарные частицы : протоны и нейтроны (нуклоны от латинского слова nucleus – ядро ). Такая протонно-нейтронная модель ядра была предложена советским физиком в 1932 г. Д.Д. Иваненко. Протон имеет положительный заряд е + =1,06·10 –19 Кл и массу покоя m p = 1,673·10 –27 кг = 1836m e . Нейтрон (n ) – нейтральная частица с массой покоя m n = 1,675·10 –27 кг = 1839m e (где масса электрона m e , равна 0,91·10 –31 кг). На рис. 9.1 приведена структура атома гелия по представлениям конца XX - начала XXI в.

Заряд ядра равен Ze , где e – заряд протона, Z – зарядовое число , равное порядковому номеру химического элемента в периодической системе элементов Менделеева, т.е. числу протонов в ядре. Число нейтронов в ядре обозначается N . Как правило Z > N .

В настоящее время известны ядра с Z = 1 до Z = 107 – 118.

Число нуклонов в ядре A = Z + N называется массовым числом . Ядра с одинаковым Z , но различными А называются изотопами . Ядра, которые при одинаковом A имеют разные Z , называются изобарами .

Ядро обозначается тем же символом, что и нейтральный атом , где X – символ химического элемента. Например: водород Z = 1 имеет три изотопа: – протий (Z = 1, N = 0), – дейтерий (Z = 1, N = 1), – тритий (Z = 1, N = 2), олово имеет 10 изотопов и т.д. В подавляющем большинстве изотопы одного химического элемента обладают одинаковыми химическими и близкими физическими свойствами. Всего известно около 300 устойчивых изотопов и более 2000 естественных и искусственно полученных радиоактивных изотопов .

Размер ядра характеризуется радиусом ядра, имеющим условный смысл ввиду размытости границы ядра. Ещё Э. Резерфорд, анализируя свои опыты, показал, что размер ядра примерно равен 10 –15 м (размер атома равен 10 –10 м). Существует эмпирическая формула для расчета радиуса ядра:

, (9.1.1)

где R 0 = (1,3 – 1,7)·10 –15 м. Отсюда видно, что объём ядра пропорционален числу нуклонов.

Плотность ядерного вещества составляет по порядку величины 10 17 кг/м 3 и постоянна для всех ядер. Она значительно превосходит плотности самых плотных обычных веществ.

Протоны и нейтроны являются фермионами , т.к. имеют спин ħ /2.

Ядро атома имеет собственный момент импульса спин ядра :

, (9.1.2)

где I внутреннее (полное ) спиновое квантовое число.

Число I принимает целочисленные или полуцелые значения 0, 1/2, 1, 3/2, 2 и т.д. Ядра с четными А имеют целочисленный спин (в единицах ħ ) и подчиняются статистике Бозе Эйнштейна (бозоны ). Ядра с нечетными А имеют полуцелый спин (в единицах ħ ) и подчиняются статистике Ферми Дирака (т.е. ядра – фермионы ).

Ядерные частицы имеют собственные магнитные моменты, которыми определяется магнитный момент ядра в целом. Единицей измерения магнитных моментов ядер служит ядерный магнетон μ яд:

. (9.1.3)

Здесь e – абсолютная величина заряда электрона, m p – масса протона.

Ядерный магнетон в m p /m e = 1836,5 раз меньше магнетона Бора, отсюда следует, что магнитные свойства атомов определяются магнитными свойствами его электронов .

Между спином ядра и его магнитным моментом имеется соотношение:

, (9.1.4)

где γ яд – ядерное гиромагнитное отношение .

Нейтрон имеет отрицательный магнитный момент μ n ≈ – 1,913μ яд так как направление спина нейтрона и его магнитного момента противоположны. Магнитный момент протона положителен и равен μ р ≈ 2,793μ яд. Его направление совпадает с направлением спина протона.

Распределение электрического заряда протонов по ядру в общем случае несимметрично. Мерой отклонения этого распределения от сферически симметричного является квадрупольный электрический момент ядра Q . Если плотность заряда считается везде одинаковой, то Q определяется только формой ядра. Так, для эллипсоида вращения

, (9.1.5)

где b – полуось эллипсоида вдоль направления спина, а – полуось в перпендикулярном направлении. Для ядра, вытянутого вдоль направления спина, b > а и Q > 0. Для ядра, сплющенного в этом направлении, b < a и Q < 0. Для сферического распределения заряда в ядре b = a и Q = 0. Это справедливо для ядер со спином, равным 0 или ħ /2.

Для просмотра демонстраций щелкните по соответствующей гиперссылке:

Атом - уникальная частица мироздания. Эта статья постарается донести до читателя информацию об этом элементе материи. Здесь мы рассмотрим такие вопросы: каков диаметр атома и его размеры, какие он имеет качественные параметры, в чем заключается его роль во Вселенной.

Знакомство с атомом

Атом - составная частица веществ, имеющая микроскопические размер и массу. Это наименьшая часть элементов химической природы с невероятно малыми размерами и массой.

Атомы строятся из двух основных структурных элементов, а именно из электронов и атомного ядра, которое, в свою очередь, образуется протонами и нейтронами. Число протонов может отличаться от количества нейтронов. Как в химии, так и в физике атомы, в которых величина протонов соизмерима с количеством электронов, называют электрически нейтральными. Если выше или ниже числа протонов, то атом, приобретая положительный или отрицательный заряд, становится ионом.

Атомы и молекулы в физике долгое время считались мельчайшими «кирпичиками», из которых строится Вселенная, и даже после открытия еще меньших составных компонентов остаются среди важнейших открытий в истории человечества. Именно атомы, связанные при помощи межатомных связей, образуют молекулы. Основная масса атома сосредоточена в ядре, а именно, в весе его протонов, которые составляют около 99,9 % от значений общей величины.

Исторические данные

Благодаря достижениям науки в области физики и химии было совершено множество открытий относительно природы атома, его строения и возможностей. Были произведены многочисленные опыты и расчеты, в ходе которых человек смог ответить на такие вопросы: каков диаметр атома, его размер, и многое другое.

Впервые было открыто и сформулировано философами древней Греции и Рима. В XVII-XVIII веках химики смогли при помощи экспериментов доказать идею об атоме как наименьшей частице вещества. Они показали, что множество веществ можно расщеплять многократно при помощи химических методов. Однако в дальнейшем открытые физиками показали, что даже атом можно разделить, а строится он из субатомных компонентов.

Международный съезд ученых по химии в Карлсруэ, расположенном на территории Германии, в 1860 г. принял решение относительно понятия об атомах и молекулах, где атом рассматривается как самая маленькая часть химических элементов. Следовательно, он также входит в состав веществ простого и сложного типа.

Диаметр атома водорода был изучен одним из самых первых. Однако его расчеты были произведены множество раз и последние из них, опубликованные в 2010 г., показали, что он на 4 % меньше, чем предполагалось ранее (10 -8). Показатель общего значения величины атомного ядра соответствует числу 10 -13 -10 -12 , а порядок величины всего диаметра равен 10 -8 . Это вызвало множество противоречий и проблем, поскольку сам водород по праву относится к основным составным частям всей обозримой Вселенной, а подобная несостыковка вынуждает совершать множество перерасчетов по отношению к фундаментальным утверждениям.

Атом и его модель

В настоящее время известно пять основных моделей атома, отличающиеся между собой, прежде всего, временными рамками представлениями об его устройстве. Рассмотрим непосредственно модели:

  • Кусочки, из которых состоит материя. Демокрит считал, что любое свойство веществ должно определяться его формами, массой и другим рядом практических характеристик. Например, огонь может обжечь, потому что его атомы острые. Согласно мнению Демокрита, даже душа образована атомами.
  • Атомная модель Томсона, созданная в 1904 г., самим Дж. Дж. Томсоном. Он предположил, что атом можно принимать в качестве положительно заряженного тела, заключенного внутри электронов.
  • Ранняя планетарная атомная модель Нагаоки, созданная в 1904 году, полагала, что устройство атома аналогично системе Сатурна. Ядро маленьких размеров и имеющее положительный показатель заряда окружено электронами, которые двигаются по кольцам.
  • Атомная планетарная модель, открытая Бором и Резерфордом. В 1911 г. Э. Резерфорд, после того как провел целый ряд экспериментов, стал полагать, что атом схож с планетарной системой, где у электронов есть орбиты, по которым они двигаются вокруг ядра. Однако это предположение шло в разрез с данными классической электродинамики. Чтобы доказать состоятельность этой теории, Нильс Бор ввел понятие о постулатах, утверждающих и показывающих, что электрону не требуется расходовать энергию, так как он находится в определенном, специальном энергетическом состоянии. Изучение атома в дальнейшем привело к тому, что появилась квантовая механика, которая смогла объяснить множество противоречий, которые можно было наблюдать.
  • Квантово-механическая атомная модель утверждает, что центральная основа рассматриваемой частицы состоит из ядра, образующегося из протонов, а также нейтронов и электронов, движущихся вокруг него.

Особенности строения

Размер атома ранее предопределял, что это неделимая частица. Однако множество опытов и экспериментов показали нам, что он строится из субатомных частиц. Любой атом состоит из электронов, протонов и нейтронов, за исключением водорода - 1, который не включает в себя последние.

Стандартная модель показывает, что протоны и нейтроны образованы посредством взаимодействия между кварками. Они относятся к фермионам, наряду с лептонами. В настоящее время различают 6 видов кварков. Протоны своим образованием обязаны двум u-кварками и одному d-кварку, а нейтрон - одному u-кварку и двум d-кварками. Ядерное взаимодействие сильного типа, которым связываются кварки, передается при помощи глюонов.

Движение электронов в атомном пространстве предопределяется их «желанием» быть ближе к ядру, другими словами, притягиваться, а также кулоновскими силами взаимодействия между ними. Эти же типы сил удерживают каждый электрон в потенциальном барьере, окружившем ядро. Орбита движения электронов обуславливает величину диаметра атома, равную прямой линии, проходящей от одной точки в окружности к другой, а также через центр.

У атома имеется его спин, который представлен собственным импульсным моментом и лежит вне понимания общей природы материи. Описывается при помощи квантовой механики.

Размеры и масса

Каждое ядро атома с одинаковым показателем числа протонов относится к общему химическому элементу. К изотопам относятся представители атомов одного элемента, но имеющие различие в нейтронном количестве.

Поскольку в физике строение атома указывают на то, что основную их массу составляют протоны и нейтроны, то общую сумму данных частиц имеют массовым числом. Выражение атомной массы в состоянии спокойствия происходит посредством использования атомных единиц массы (а. е. м.), которые по-другому именуются дальтонами (Да).

Размер атома не имеет четко выраженных границ. Потому определяется он при помощи измерения расстояния между ядрами одинакового типа атомов, химически связанных между собой. Другой способ измерения возможен при расчете длительности пути от ядра до дальнейшей из имеющихся электронных орбит стабильного типа. элементов Д. И. Менделеева располагает в себе атомы по размеру, от меньших к большим, в направлении столбца сверху вниз, движение по направлению слева направо также основано на уменьшении их размеров.

Время распада

Все хим. элементы имеют изотопы, от одного и выше. Они содержат в себе нестабильное ядро, подверженное радиоактивному распаду, вследствие чего происходит испускание частиц или электромагнитного излучения. Радиоактивным называют тот изотоп, у которого величина радиуса сильного взаимодействия выходит за пределы дальних точек диаметра. Если рассмотреть на примере аурума, то изотопом будет атом Au, за пределы диаметра которого во всех направлениях "вылетают" излучающиеся частицы. Изначально диаметр атома золота соответствует величине двух радиусов, каждый из которых равен 144 пк, а частицы, выходящие за пределы этого расстояния от ядра, будут считаться изотопами. Существует три типа распада: альфа-, бета- и гамма излучение.

Понятие о валентности и наличии энергетических уровней

Мы уже ознакомились с ответами на такие вопросы: каков диаметр атома, его размер, ознакомились с понятием распада атома и т. д. Однако, помимо этого, существуют и такие характеристики атомов, как величина энергетических уровней и валентность.

Электроны, двигающиеся вокруг атомного ядра, обладают потенциальной энергией и пребывают в связанном состоянии, располагаясь на возбужденном уровне. В соответствии с квантовой моделью, электрон занимает только дискретное количество энергетических уровней.

Валентность - это общая способность атомов, у которых на электронной оболочке имеется свободное место, устанавливать связи химического типа с другими атомными единицами. Посредством установления химических связей атомы стараются заполнить свой слой внешней валентной оболочки.

Ионизация

В результате воздействия высокого значения напряженности на атом он может подвергаться необратимой деформации, которая сопровождается электронным отрывом.

Это приводит к ионизации атомов, в ходе которой они отдают электрон(ы) и претерпевают превращение из стабильного состояния в ионы с положительным зарядом, иначе именуемые катионами. Этот процесс требует определенной энергии, которую называют потенциалом ионизации.

Подводя итоги

Изучение вопросов о строении, особенностях взаимодействия, качественных параметрах, о том, каков же диаметр атома и какие он имеет размеры, все это позволило человеческому разуму совершить невероятный труд, помогающий лучше осознать и понять устройство всей материи вокруг нас. Эти же вопросы позволили открыть человеку понятия об электроотрицательности атома, его дисперсном притяжении, валентных возможностях, определить длительность радиоактивного распада и многое другое.