Что такое Ультрафиолетовый свет: УФ-излучение. Большая энциклопедия нефти и газа

Ультрафиолет был открыт более 200 лет назад, но лишь с изобретением искусственных источников ультрафиолетового излучения человек смог использовать удивительные свойства этого невидимого света. Сегодня ультрафиолетовая лампа помогает бороться со многими заболеваниями и дезинфицирует, позволяет создавать новые материалы и используется криминалистами. Но для того чтобы приборы УФ спектра приносили пользу, а не вред, необходимо четко представлять, какими они бывают и для чего служат.

Что такое ультрафиолетовое излучение и каким оно бывает

Ты наверняка знаешь, что свет – это электромагнитное излучение. В зависимости от частоты цвет такого излучения изменяется. Низкочастотный спектр кажется нам красным, высокочастотный – синим. Если поднять частоту еще выше, то свет станет фиолетовым, а после совсем исчезнет. Точнее, исчезнет для твоего глаза. На самом деле излучение перейдет в область ультрафиолетового спектра, который мы не способны видеть из-за особенностей глаза.

Но если мы не видим ультрафиолетовый свет, то это не значит, что он на нас никак не воздействует. Ты же не будешь отрицать, что радиация безопасна, поскольку мы ее не можем увидеть. А радиация – не что иное, как такое же электромагнитное излучение, как свет и ультрафиолет, только более высокой частоты.

Но вернемся к ультрафиолетовому спектру. Он располагается, как мы выяснили, между видимым светом и радиационным излучением:

Зависимость типа электромагнитного излучения от его частоты

Отбросим свет с радиацией и рассмотрим ультрафиолетовое излучение поближе:


Разделение ультрафиолетового диапазона на поддиапазоны

На рисунке хорошо видно, что весь УФ диапазон условно делится на два поддиапазона: ближний и дальний. Но на этом же рисунке сверху мы видим деление на УФА, УФВ и УФС. В дальнейшем мы будем пользоваться именно таким разделением – ультрафиолет А, В и С, поскольку оно четко разграничивает степень воздействия излучения на биологические объекты.

Мнение эксперта

Алексей Бартош

Задать вопрос эксперту

Конечный участок дальнего диапазона никак не обозначен, поскольку не имеет особого практического значения. Воздух для ультрафиолетового излучения с длиной волны короче 100 нм (его еще называют жестким ультрафиолетовым) практически непрозрачен, поэтому его источники можно использовать только в вакууме.

Свойства ультрафиолета и воздействие его на живые организмы

Итак, в нашем распоряжении три ультрафиолетовых диапазона: А, В и С. Рассмотрим свойства каждого из них.

Ультрафиолет А

Излучение лежит в диапазоне 400 – 320 нм и называется мягким или длинноволновым ультрафиолетовым. Проникновение его в глубинные слои живых тканей минимально. При умеренном применении УФА не только не наносит вреда организму, но и полезен. Он укрепляет иммунитет, способствует выработке витамина D, улучшает состояние кожи. Именно под таким ультрафиолетом мы загораем на пляже.

Но при передозировке даже мягкий ультрафиолетовый диапазон может представлять определенную опасность для человека. Наглядный пример: добрался до пляжа, прилег на пару часиков и «сгорел». Знакомо? Безусловно. Но могло быть и еще хуже, если бы ты лежал часиков пять или с открытыми глазами и без качественных солнцезащитных очков. При длительном воздействии на глаза УФА способен вызвать ожог роговицы, а кожу сжечь буквально до волдырей.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Все вышесказанное справедливо и для других биологических объектов: растений, животных, бактерий. Именно умеренный УФА в значительной степени провоцирует «цветение» воды в водоемах и порчу продуктов, подстегивая рост водорослей и бактерий. Передозировка его чрезвычайно вредна.

Ультрафиолет В

Средневолновый ультрафиолет, занимающий диапазон 320 – 280 нм. Ультрафиолетовое излучение с такой длиной волны способно проникать в верхние слои живых тканей и вызывать серьезные изменения их структуры вплоть до частичного разрушения ДНК. Даже минимальная доза УФВ способна вызвать серьезный и довольно глубокий радиационный ожог кожи, роговицы и хрусталика. Серьезную опасность такое излучение также представляет для растений, а для многих видов вирусов и бактерий ввиду их небольших размеров УФВ вообще смертелен.

Ультрафиолет С

Самый коротковолновый и самый опасный для всего живого диапазон, в который входит ультрафиолетовое излучение с длиной волны от 280 до 100 нм. УФС даже в небольших дозах способно разрушать цепи ДНК, вызывая мутации. У человека, как правило, его воздействие вызывает рак кожи и меланому. Из-за способности достаточно глубоко проникать в ткани УФС может вызвать необратимый радиационный ожог сетчатки и глубокие повреждения кожного покрова.

Дополнительную опасность представляет способность ультрафиолетового излучения категории С ионизировать молекулы кислорода, находящиеся в атмосфере. В результате такого воздействия в воздухе образуется озон — трехатомный кислород, который является сильнейшим окислителем, а по степени опасности для биологических объектов относится к первой, самой опасной категории ядов.

Устройство ультрафиолетовой лампы

Человек научился создавать искусственные источники ультрафиолетового излучения, причем излучать они могут в любом заданном диапазоне. Конструктивно ультрафиолетовые лампы выполняются в виде колбы, заполненной инертным газом с примесью металлической ртути. По бокам колбы впаиваются тугоплавкие электроды, на которые подается напряжение питания прибора. Под действием этого напряжения в колбе начинается тлеющий разряд, который заставляет молекулы ртути испускать ультрафиолет во всех спектрах УФ диапазона.


Конструкция ультрафиолетовой лампы

Изготавливая колбу из того или иного материала, конструкторы могут отсекать излучение определенной длины волны. Так, лампа из эритемного стекла пропускает только ультрафиолетовое излучение типа А, увиолевая колба уже прозрачна для УФВ, но не пропускает жесткое излучение УФС. Если же колбу сделать из кварцевого стекла, то прибор будет излучать все три вида ультрафиолетового спектра – А, В, С.

Все лампы ультрафиолетового света являются газоразрядными и должны включаться в сеть через специальное пускорегулирующее устройство (ЭПРА). В противном случае тлеющий разряд в колбе мгновенно перейдет в неуправляемый дуговой.


Электромагнитное (слева) и электронное пускорегулирующие устройства для газоразрядных ламп ультрафиолетового света

Важно! Лампы накаливания с синим баллоном, которые мы часто используем для прогревания при ЛОР заболеваниях, не являются ультрафиолетовыми. Это обычные лампочки накаливания, а синяя колба служит лишь для того, чтобы ты не получил тепловой ожог и не повредил глаза ярким светом, держа довольно мощную лампу у самого лица.


Рефлектор Минина не имеет никакого отношения к ультрафиолетовому излучению и комплектуется обычной лампой накаливания из синего стекла

Применение УФ ламп

Итак, ультрафиолетовые лампы существуют, и мы даже знаем, что у них внутри. Но для чего они нужны? Сегодня приборы ультрафиолетового света широко используются как в быту, так и на производстве. Вот основные области применения УФ ламп:

1. Изменение физических свойств материалов . Под действием ультрафиолетового излучения некоторые синтетические материалы (краски, лаки, пластики и пр.) могут менять свои свойства: твердеть, размягчаться, менять цвет и другие физические характеристики. Живой пример – стоматология. Специальная фотополимерная пломба пластична до тех пор, пока врач после ее установки не осветит полость рта мягким ультрафиолетовым светом. После такой обработки полимер становится прочнее камня. В косметических салонах тоже используют специальный гель, твердеющий под УФ лампой. С его помощью, к примеру, косметологи наращивают ногти.

После обработки ультрафиолетовой лампой мягкая, как пластилин, пломба приобретает исключительную прочность

2. Криминалистика и уголовное право . Полимеры, способные светиться в ультрафиолете, широко используются для защиты от подделки. Для интереса попробуй осветить купюру ультрафиолетовой лампой. Таким же образом можно проверить купюры почти всех стран, подлинность особо важных документов или печатей на них (так называемая защита «Цербер»). Криминалисты пользуются ультрафиолетовыми лампами для обнаружения следов крови. Она, конечно, не светится, зато полностью поглощает ультрафиолетовое излучение и на общем фоне будет казаться абсолютно черной.


Элементы защиты купюр, печатей и паспорта (Беларусь), видимые только в ультрафиолетовом излучении

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Если ты смотрел фильмы про криминалистов, то наверняка заметил, что в них кровь под УФ лампой вопреки вышесказанному мной светится сине-белым. Чтобы достичь такого эффекта, специалисты обрабатывают предполагаемые пятна крови специальным составом, который взаимодействует с гемоглобином, после чего начинает флюоресцировать (светиться в ультрафиолетовом излучении). Такой метод не только более нагляден для зрителя, но и более эффективен.

3. При дефиците естественного ультрафиолета . Польза ультрафиолетовой лампы спектра А для биологических объектов была открыта почти одновременно с ее изобретением. При недостатке естественного ультрафиолетового излучения страдает иммунитет человека, кожа приобретает нездоровый бледный оттенок. Если растения и комнатные цветы выращивать за оконным стеклом или под обычными лампами накаливания, то и они чувствуют себя не лучшим образом – плохо растут и часто болеют. Все дело в отсутствии ультрафиолетового излучения спектра А, недостаток которого особенно вреден для детей. Сегодня УФА лампы используют для укрепления иммунитета и улучшения состояния кожи повсеместно, где не хватает естественного света.


Использование ультрафиолетовых ламп спектра А для восполнения дефицита естественного ультрафиолета

На самом деле приборы, служащие для восполнения дефицита естественного ультрафиолетового света, излучают не только ультрафиолет А, но и В, хотя доля последнего в общем излучении чрезвычайно мала — от 0,1 до 2-3 %.

4. Для дезинфекции . Все вирусы и бактерии – тоже живые организмы, к тому же они настолько малы, что «перегрузить» их ультрафиолетовым светом совсем несложно. Жесткий ультрафиолет (С) в состоянии проходить некоторые микроорганизмы буквально насквозь, разрушая их структуру. Таким образом, лампы спектра В и С, получившие название антибактериальных или бактерицидных, можно использовать для обеззараживания квартиры, общественных заведений, воздуха, воды, предметов и даже для лечения вирусных инфекций. При использовании ламп УФС дополнительным дезинфицирующим фактором выступает озон, о котором я писал выше.


Использование ультрафиолетовых ламп для дезинфекции и антибактериальной обработки

Ты наверняка слышал такой медицинский термин, как кварцевание. Эта процедура – не что иное, как обработка предметов или тела человека строго дозированным жестким ультрафиолетовым излучением.

Основные характеристики источников ультрафиолетового излучения

Какими характеристиками УФ лампы нужно руководствоваться, чтобы при ее использовании получить максимальный эффект и не нанести вреда здоровью своему и окружающих? Вот основные из них:

  1. Диапазон излучения.
  2. Мощность.
  3. Назначение.
  4. Срок службы.

Излучаемый диапазон

Это основной параметр. В зависимости от длины волны ультрафиолет действует по-разному. Если УФА опасен лишь для глаз, и при правильном использовании не представляет серьезной угрозы для организма, то УФВ в состоянии не только испортить глаза, но и спровоцировать глубокие, порой необратимые ожоги на коже. УФС отлично дезинфицирует, но может представлять смертельную опасность для человека, поскольку излучение такой длины волны разрушает ДНК и образует ядовитый газ озон.

С другой стороны, спектр УФА абсолютно бесполезен в качестве антибактериального средства. Пользы от такой лампы, к примеру, при очистке воздуха от микробов, практически не будет. Более того, некоторые виды бактерий и микрофлоры станут еще активнее. Таким образом, выбирая УФ лампу, необходимо четко представлять для чего она будет использоваться и какой спектр излучения она должна иметь.

Мощность

Имеется в виду сила создаваемого лампой УФ потока. Она пропорциональна потребляемой мощности, поэтому при выборе прибора ориентируются обычно на данный показатель. Бытовые ультрафиолетовые лампы обычно не превышают мощности 40-60, профессиональные устройства могут иметь мощность до 200-500 Вт и более. Первые обычно имеют низкое давление в колбе, вторые – высокое. Выбирая излучатель для тех или иных целей, нужно четко представлять, что в плане мощности больше — не всегда значит лучше. Для получения максимального эффекта излучение прибора должно быть строго дозированным. Поэтому при покупке лампы обращайте внимание не только на ее назначение, но и на рекомендуемую площадь помещения или производительность прибора, если он служит для очистки воздуха или воды.

Назначение и конструкция

По своему назначению ультрафиолетовые лампы делятся на бытовые и профессиональные. Вторые обычно имеют большую мощность, более широкий и жесткий спектр излучения и сложны по конструкции. Именно поэтому они требуют для своего обслуживания квалифицированного специалиста и соответствующих знаний. Если ты собираешься покупать ультрафиолетовую лампу для домашнего использования, то от профессиональных устройств лучше отказаться. В таком случае велика вероятность, что лампа, скорее, навредит, чем принесет пользу. Особенно это касается приборов, работающих в диапазоне УФС, излучение которых является ионизирующим.

По типу конструкции ультрафиолетовые лампы делятся на:

1. Открытые . Эти приборы излучают ультрафиолет непосредственно в окружающую среду. При неправильном применении представляют наибольшую опасность для организма человека, но позволяют провести качественное обеззараживание помещения, включая воздух и все находящиеся в нем предметы. Лампы открытой или полуоткрытой (узконаправленного излучения) конструкции используются также для медицинских целей: лечения инфекционных заболеваний и восполнения дефицита ультрафиолета (фитолампы, солярии).


Использование бактерицидных ламп для антибактериальной обработки помещений

2. Рециркуляторы или приборы закрытого типа. Лампа в них находится за полностью непрозрачным кожухом, а УФ изучение воздействует только на рабочую среду – газ или жидкость, прогоняемую специальным насосом сквозь облучаемую камеру. В быту рециркуляторы обычно используются для бактерицидной обработки воды или воздуха. Поскольку устройства не излучают ультрафиолет, при правильном использовании они полностью безопасны для человека и могут использоваться в его присутствии. Рециркуляторы могут быть как бытового, так и промышленного назначения.


Рециркулятор – стерилизатор для воды (слева) и для воздуха

3. Универсальные. Приборы этого типа могут работать как в режиме рециркуляции воздуха, так и прямого излучения. Конструктивно выполнены как рециркулятор с раскладным кожухом. В собранном виде это обычный рециркулятор, с открытыми шторками – бактерицидная лампа открытого типа.


Универсальная бактерицидная лампа в режиме рециркулятора (слева)

Срок службы

Поскольку принцип работы и конструкция ультрафиолетовой лампы сходны с принципом и устройством люминесцентного осветительного прибора, логично предположить, что сроки службы у них одинаковы и могут достигать 8 000–10 000 ч. На практике это не совсем так. В процессе работы лампа «стареет»: ее световой поток уменьшается. Но если в обычной осветительной лампе этот эффект заметен визуально, то УФ лампу «на глаз» проверить невозможно. Поэтому производитель ограничивается гораздо меньшим сроком работы: от 1 000 до 9 000 часов в зависимости от мощности лампы, ее назначения и, конечно, качества материалов, комплектующих и бренда.

Если в паспорте на устройство не указана периодичность замены ламп или заявлен максимальный срок 20 тысяч часов и более, то от покупки такого устройства стоит отказаться. Также должна насторожить и слишком низкая стоимость прибора. Скорее всего, это низкокачественный товар либо вовсе подделка.

Cтраница 1


Видимый и ультрафиолетовый свет пропускается различными образцами зеркального и оптического стекла до длин волн 3200 - 3500 А, более короткие волны стекло не пропускает. Плавленый кварц пропускает волны длиной 2000 А, однако серьезным недостатком его является малая механическая прочность.  

Поглощение видимого и ультрафиолетового света соответствует квантам энергии от 30 до 300 ккал / моль.  

Для видимого и ультрафиолетового света хорошие результаты дают прозрачные металлические слои платины, родия , сурьмы (4000 до 2000 А) , отложенные испарением на кварцевые пластинки.  

Радиоволны, инфракрасный, видимый и ультрафиолетовый свет, рентгеновские лучи и гамма-излучение представляют собой электромагнитные волны с различной длиной волны. Планк выдвинул предположение, что энергия электромагнитного излучения квантована. Энергия кванта электромагнитного излучения пропорциональна его частоте, Е hv, где h - постоянная Планка, равная 6 6262 - 10 34 Дж - с. Выбивание электронов с поверхности металла под действием света называется фотоэлектрическим эффектом. Квант света называется фотоном. Энергия фотона равна hv, где v - частота электромагнитной волны. Зависимость поглощения света атомом или молекулой от длины волны, частоты или волнового числа представляет собой спектр поглощения. Соответствующая зависимость испускания света атомом или молекулой является спектром испускания. Спектр испускания атомарного водорода состоит из нескольких серий линий.  

Исследования поглощения видимого и ультрафиолетового света уже давно используются для получения информации о равновесии в растворе. Однако, так как оптическая плотность раствора зависит от специфического фактора интенсивности (коэффициента экстинкции), а также от концентрации каждой поглощающей формы, интерпретация измерений часто усложняется, если присутствует несколько комплексов. Метод непрерывных изменений (метод Жоба) и другие ненадежные методы, которые все еще часто применяются для вычисления констант устойчивости из спектрофотометрических данных, критически разобраны в разд. Настоящая глава рассматривает главным образом более точные методы обработки измерений поглощения в видимой и ультрафиолетовой частях спектра. В этой главе также рассматривается использование позднее разработанных областей спектроскопии и близко с ними связанных поляриметрических и магнитооптических методов для изучения равновесия в растворе.  

Описана теломеризация под влиянием видимого и ультрафиолетового света, радиоактивного излучения и радиоактивных частиц, протекающая по радикальному механизму.  


Окошко следует защищать от видимого и ультрафиолетового света.  

Алюминийорганические соединения обычно не поглощают видимый и ультрафиолетовый свет. Несомненно, однако, что поглощение может быть вызвано введением некоторых заместителей, например арильных групп. Как уже указывалось выше, донорноакцепторные комплексы с алифатическими и циклическими альдиминами (например, с бензальанилином, пиридином и бензопиридинами) в большей или меньшей степени окрашены. Эта окраска может быть использована для различных количественных определений.  

Как установлено , облучение видимым и ультрафиолетовым светом полимеров, предварительно облученных 1У излУчением, позволят получить дополнительную информацию о природе и свойствах парамагнитных частиц. Оказалось, что парамагнитные образования в полимерах поглощают свет в видимой, и УФ-области.  

Ароматические поликарбонаты очень устойчивы к действию видимого и ультрафиолетового света даже в присутствии воздуха.  

Методами качественной и количественной спектроскопии в видимом и ультрафиолетовом свете широко пользуются для определения некоторых витаминов, гормонов и других биологически активных веществ.  

На основании изучения спектров поглощения в инфракрасном, видимом и ультрафиолетовом свете, а также изучения комбинационного рассеяния света органическую молекулу, как упоминалось выше, нужно представлять не как статическую систему. Атомы в молекулах не неподвижны, а совершают колебания, приближающиеся к гармоническим. Степень отклонения колебаний атомов от колебаний типа гармонического - так называемая антигармоничность - определяет способность, молекулы к распаду на составные части.  

На рис. 16 изображен спектрофотометр СФ-4 для видимого и ультрафиолетового света.  

Крониг показал , что в области видимого и ультрафиолетового света эти представления ведут к следствиям в отношении дисперсии и абсорбции, качественно совпадающим с результатами опыта.  

Ведущий научный сотрудник лаборатории обработки сенсорной информации Вадим Максимов, ведущий автор исследования, опубликованного в престижном британском журнале Proceedings of the Royal Society B , рассказал РИА Новости о том, в каких цветах видят мир птицы, рыбы, люди и насекомые.

Цвета, которых нет

Разных цветов на самом деле не существует — нет такого физического свойства. Красные, зеленые, синие предметы всего лишь отражают свет с немного разной длиной волны. Цвета "видит" уже наш мозг, получая сигнал от зрительных рецепторов, "настроенных" на определенную длину волны.

Способность различать цвета зависит от числа типов таких рецепторов в сетчатке глаза и их "настройки". Рецепторы, отвечающие за цветное зрение, называются колбочками, но существует также "черно-белый канал" — палочки. Они намного чувствительнее, благодаря им мы можем ориентироваться в сумерках, когда колбочки уже не работают. Но и различать цвета в это время мы не можем.

Что видят люди…

Стоит неправильно выбрать цвета для домашних помещений и на кухне захочется спать, в спальне - танцевать, а в ванной - есть и часами беседовать. Инструкция, которая позволит избежать этих ошибок и гармонично оформить интерьер, - в инфографике РИА Новости.

Большинство млекопитающих, в том числе собаки, обладают двумя типами колбочек — коротковолновыми (с максимумом чувствительности к излучению с длиной волны 420 нанометров) и длинноволновыми (550 нанометров). Однако у человека и у всех приматов Старого света три типа колбочек и «трехмерное» цветовое зрение. Колбочки человека настроены на 420, 530 и 560 нанометров — мы воспринимаем их как синий, зеленый и красный цвета.

"Но 2% мужчин — тоже дихроматы, их называют "цветнослепые". На самом деле они не цветнослепые, у них просто есть только два типа колбочек — коротковолновая и одна из двух длинноволновых. Они видят цвета, но хуже — не различают красный и зеленый. Это и есть дальтоники", — сказал Максимов.

Ненужное цветовое зрение

Интересные факты из жизни собачьей 21 июня российские кинологи и их подопечные отмечают свой профессиональный праздник. Интересно, что использовать собак в качестве сыщиков в России начали еще в 1906 году, а вот одомашнивание этого вида животных началось приблизительно 10 тысяч лет назад.

Зрение собак ученые исследовали с конце 19 века. В 1908 году ученик Павлова Леон Орбели, изучавший условные рефлексы у собак, доказал почти полное отсутствие цветового зрения у собак. Однако в середине 20 века американские ученые обнаружили, что у собак в сетчатке присутствуют два типа колбочек, "настроенных" на 429 и 555 нанометров, хотя и в небольшом числе — лишь 20% от общего числа фоторецепторов.

"Собаки могут видят цвета примерно так же, как дальтоники. Американцы, которые обнаружили приемники в сетчатке, видели, что собаку можно научить различать цвета. Но они все равно делали вывод, что в жизни собака скорее всего не использует цветовое зрение, поскольку собаки существенную часть жизни бодрствует в сумерки, когда колбочки не работают", — сказал Максимов.

Однако он и его коллеги в эксперименте смогли доказать, что собаки действительно не только технически способны различать цвета, но и использовать это умение в жизни. В эксперименте ученые помешали пищу в закрытой и непрозрачной для запахов коробке под листами бумаги, окрашенной в светло-синий, темно-синий, светло-желтый и темно-желтый цвета.

"А потом мы взяли и поменяли цветности этих листов. И вдруг оказалось, что собаки идут не на светлую, как раньше, а на темную бумагу, но с тем же цветом. Оказалось, что для нее важна не яркость, а цвет, то есть они не только могут различать цвета, но и пользуются этим на практике", — говорит ученый.

Четырехмерное зрение

Акулы могут быть дальтониками, считают ученые Акулы, возможно, не различают цветов, как и многие морские млекопитающие, хотя их родственники, например, скаты, обладают цветным зрением, пишет группа австралийских ученых в статье, опубликованной в журнале Naturwissenschaften.

Рекордсмены по цветному зрению — рыбы, птицы и рептилии. Большинство видов этих животных — тетрахроматы, в их сетчатке присутствуют четыре типа колбочек, а у тропических раков-богомолов — 16 типов приемников.

В частности, вьюрки обладают колбочками, настроенными на ультрафиолет (370 нанометров), синий (445 нанометров), зеленый (508 нанометров) и красный (565 нанометров) цвета. "При этом птицы плохо различают яркость. Черное от белого они отличают, но оттенки серого — отказываются. И их совсем нельзя научить, если стимулы отличаются не только яркостью, но и цветом. Они "цепляются" за цвет", — сказал Максимов.

Зато птицам доступен неведомый человеку ультрафиолетовый цвет. Максимов рассказал об экспериментах с полевыми воробьями, которых учили различать листы бумаги, выкрашенные мелом и цинковыми белилами в разные оттенки серого.

"Цинковые белила поглощают ультрафиолет, а мел — нет. Для человека это одинаковый белый цвет. Приучаем птиц летать на цинковые светлые листы, потом "цинковую" бумажку делаем темной, а "меловую" делаем светлой. И видим, что птица летала на светлую бумажку, а теперь начинает летать на темную — именно потому, что она видит "ультрафиолетовый" цвет", — отметил собеседник агентства.

Предела нет

Строго говоря, никакой четкой границы видимости для рецепторов не существует, просто по мере удаления от "своей" длины волны, они становятся все менее и менее чувствительными, нужна все более высокая яркость, чтобы "разбудить" рецептор, говорит ученый.

"Когда экспериментируют со зрением, по мере движения в стороны от видимого диапазона чувствительность падает экспоненциально, но сколько вы не будете двигаться в инфракрасную или ультрафиолетовую область, она остается ненулевой", — отметил Максимов.

По его словам, в особых условиях, в абсолютной темноте и после долгой адаптации человек может увидеть "инфракрасный свет" — излучение, проходящее через специальное стекло, пропускающее длины волн больше 720 нанометров. Синие колбочки сетчатки человека "аппаратно" способны видеть ультрафиолетовое излучение — проблема в том, что роговица и хрусталик глаза его не пропускают.

"Бывает, что у человека по поводу катаракты вынимается хрусталики, в этом случае человек может видеть ультрафиолет. У нас был сотрудник, который видел разницу между двумя белилами — свинцовыми и цинковыми. Цинковые белила поглощают ультрафиолет, а свинцовые отражают", — сказал Максимов.

Обеззараживание с помощью УФ-ламп я помню с детства – в садике, санатории и даже в летнем лагере стояли несколько пугающие конструкции, которые светились красивым фиолетовым светом в темноте и от которых нас отгоняли воспитатели. Так что же такое на самом деле ультрафиолетовое излучение и зачем оно нужно человеку?

Пожалуй, первый вопрос, на который нужно ответить – что такое вообще ультрафиолетовые лучи и как они работают. Обычно так называют электромагнитное излучение, которое находится в диапазоне между видимым и рентгеновским излучением. Ультрафиолет характеризуется длиной волны от 10 до 400 нанометров.
Открыли его еще в 19 веке, и произошло это благодаря открытию инфракрасного излучения. Обнаружив ИК-спектр, в 1801 г. И.В. Риттер обратил внимание на противоположный конец светового диапазона в процессе опытов с хлоридом серебра. А затем сразу несколько ученых пришли к выводу о неоднородности ультрафиолета.

Сегодня его разделяют на три группы:

  • УФ-А излучение – ближний ультрафиолет;
  • УФ-Б – средний;
  • УФ-С – дальний.

Такое разделение во многом обусловлено именно воздействием лучей на человека. Естественным и основным источником ультрафиолета на Земле является Солнце. По сути, именно от этого излучения мы спасаемся солнцезащитными кремами. При этом дальний ультрафиолет полностью поглощается атмосферой Земли, а УФ-А как раз доходит до поверхности, вызывая приятный загар. А в среднем 10% УФ-Б провоцируют те самые солнечные ожоги, а также могут приводить к образованию мутаций и кожных заболеваний.

Искусственные источники ультрафиолета создаются и используются в медицине, сельском хозяйстве, косметологии и различных санитарных учреждениях. Генерирование ультрафиолетового излучения возможно несколькими способами: температурой (лампы накаливания), движением газов (газовые лампы) или металлических паров (ртутные лампы). При этом мощность таких источников варьируется от нескольких ватт, обычно это небольшие мобильные излучатели, до киловатта. Последние монтируются в объемные стационарные установки. Сферы применения УФ-лучей обусловлены их свойствами: способностью ускорять химические и биологические процессы, бактерицидным эффектом и люминесценцией некоторых веществ.

Ультрафиолет широко применяется для решения самых различных задач. В косметологии использование искусственного УФ-излучения используется прежде всего для загара. Солярии создают довольно мягкий ультрафиолет-А согласно введенным нормам, а доля УФ-В в лампах для загара составляет не более 5%. Современные психологи рекомендуют солярии для лечения «зимней депрессии», которая в основном вызвана дефицитом витамина D, так как он образуется под влиянием УФ-лучей. Также УФ-лампы используют в маникюре, так как именно в этом спектре высыхают особо стойкие гель-лаки, шеллак и подобные им.

Ультрафиолетовые лампы используют для создания фотоснимков в нестандартных ситуациях, например, для запечатления космических объектов, которые невидимы в обычный телескоп.

Широко применяется ультрафиолет в экспертной деятельности. С его помощью проверяют подлинность картин, так как более свежие краски и лаки в таких лучах выглядят темнее, а значит можно установить реальный возраст произведения. Криминалисты также используют УФ-лучи для обнаружения следов крови на предметах. Кроме того, ультрафиолет широко используется для проявления скрытых печатей, защитных элементов и нитей, подтверждающих подлинность документов, а также в световом оформлении шоу, вывесок заведений или декораций.

В медицинских учреждениях ультрафиолетовые лампы используются для стерилизации хирургических инструментов. Помимо этого, все еще широко распространено обеззараживание воздуха с помощью УФ-лучей. Существует несколько видов такого оборудования.

Так называют ртутные лампы высокого и низкого давления, а также ксеноновые импульсные лампы. Колба такой лампы изготавливается из кварцевого стекла. Основной плюс бактерицидных ламп – долгий срок службы и мгновенная способность к работе. Примерно 60% их лучей находятся в бактерицидном спектре. Ртутные лампы достаточно опасны в эксплуатации, при случайном повреждении корпуса необходима тщательная очистка и демеркуризация помещения. Ксеноновые лампы менее опасны при повреждении и отличаются более высокой бактерицидной активностью. Также бактерицидные лампы разделяют на озоновые и безозоновые. Первые характеризуются наличием в своем спектре волны длиной 185 нанометров, которая взаимодействует с находящимся в воздухе кислородом и превращает его в озон. Высокие концентрации озона опасны для человека, и использование таких ламп строго ограничено во времени и рекомендуется только в проветриваемом помещении. Все это привело к созданию безозоновых ламп, на колбу которых нанесено специальное покрытие, не пропускающее волну в 185 нм наружу.

Вне зависимости от вида бактерицидные лампы имеют общие недостатки: они работают в сложной и дорогостоящей аппаратуре, средний ресурс работы излучателя – 1,5 года, а сами лампы после перегорания должны храниться упакованными в отдельном помещении и утилизироваться специальным образом согласно действующим нормативам.

Состоят из лампы, отражателей и других вспомогательных элементов. Такие устройства бывают двух видов – открытые и закрытые, в зависимости от того, проходят УФ-лучи наружу или нет. Открытые выпускают ультрафиолет, усиленный отражателями, в пространство вокруг, захватывая сразу практически всю комнату, если установлены на потолке или стене. Проводить обработку помещения таким облучателем в присутствии людей строго запрещено.
Закрытые облучатели работают по принципу рециркулятора, внутри которого установлена лампа, а вентилятор втягивает в прибор воздух и выпускает уже облученный наружу. Их размещают на стенах на высоте не менее 2 м от пола. Их возможно использовать в присутствии людей, однако длительное воздействие не рекомендуется производителем, так как часть УФ-лучей может проходить наружу.
Из недостатков таких приборов можно отметить невосприимчивость к спорам плесени, а также все сложности утилизации ламп и строгий регламент использования в зависимости от типа излучателя.

Бактерицидные установки

Группа облучателей, объединенная в один прибор, использующийся в одном помещении, называется бактерицидной установкой. Обычно они достаточно крупногабаритные и отличаются высоким энергопотреблением. Обработка воздуха бактерицидными установками производится строго в отсутствие людей в комнате и отслеживается по Акту ввода в эксплуатацию и Журналу регистрации и контроля. Используется только в медицинских и гигиенических учреждениях для обеззараживания как воздуха, так и воды.

Недостатки ультрафиолетового обеззараживания воздуха

Помимо уже перечисленного, использование УФ-излучателей имеет и другие минусы. Прежде всего, сам ультрафиолет опасен для человеческого организма, он может не только вызывать ожоги кожи, но и сказываться на работе сердечно-сосудистой системы, опасен для сетчатки глаза. Кроме того, он может вызывать появление озона, а с ним и присущие этому газу неприятные симптомы: раздражение дыхательных путей, стимуляция атеросклероза, обострение аллергии.

Эффективность работы УФ-ламп достаточно спорная: инактивация болезнетворных микроорганизмов в воздухе разрешенными дозами ультрафиолета происходит только при статичности этих вредителей. Если микроорганизмы двигаются, взаимодействуют с пылью и воздухом, то необходимая доза облучения возрастает в 4 раза, чего не может создать обычная УФ-лампа. Поэтому эффективность работы облучателя рассчитывается отдельно с учетом всех параметров, и крайне сложно подобрать подходящие для воздействия на все типы микроорганизмов сразу.

Проникновение УФ-лучей относительно неглубокое, и если даже неподвижные вирусы находятся под слоем пыли, верхние слои защищают нижние, отражая от себя ультрафиолет. А значит, после уборки обеззараживание нужно проводить еще раз.
УФ-облучатели не могут фильтровать воздух, они борются только с микроорганизмами, сохраняя все механические загрязнители и аллергены в первозданном виде.

Чтобы получать выгоду от окружающего мира и избегать его опасностей, надо хоть что-то об этом мире знать. Поэтому даже у примитивных сидячих животных, неподвижных и со всех сторон одинаковых, есть чувствительные клетки или целые органы. Они собирают данные об окружающей среде, и уже на основе этих данных животные совершают наиболее подходящие действия.

Организмы научились отличать свет от тьмы очень давно. Для многих животных, в том числе и людей, зрение — основной источник информации об окружающем мире. Как же устроен этот процесс?

В первом приближении глаз позвоночных и головоногих моллюсков (одни из самых продвинутых существ в «параллельной» с нами ветке эволюции) устроен как фотоаппарат. Есть линза (хрусталик), есть отверстие, через которое свет попадает на линзу (зрачок). Наконец, есть фотопластинка (или матрица у современных фотоаппаратов) — сетчатка. Чувствительные клетки (фоторецепторы) в ее составе активируются при падении света определенной длины волны. Для каждого типа клеток сетчатки диапазон оптимальных длин волн свой.

Глаз - очень сложная структура, и для полноценного зрения нужно, чтобы хорошо работали все ее элементы. Фото: Alexilus/shutterstock

Есть две большие группы фоторецепторов — палочки и колбочки. Палочки активировать легко, для этого не нужна сильная освещенность. Но и четкость изображения они дают слабенькую. В этом легко убедиться, если пойти ночью в лес без фонарика: что-то видно, но лишь в общих чертах. А еще совершенно непонятно, какого цвета окружающие предметы. Для распознавания цветов и их оттенков нужны колбочки. Эти рецепторы активировать сложнее, и работают они только при хорошем освещении.

Разные типы колбочек отвечают за распознавание различных цветов, реагируя на свет в узком диапазоне длин волн. Поэтому иметь какой-то один тип колбочек бессмысленно: «палочные сумерки» просто приобретут тот или иной оттенок. Это непрактично и опасно: с таким зрением, например, невозможно будет отличить спелые плоды от неспелых, а незрелые фрукты могут быть ядовитыми. Так что зрячие животные обзавелись минимум двумя типами колбочек.

«У человека три типа колбочек и один тип палочек, — поясняет Павел Максимов, кандидат биологических наук, старший научный сотрудник лаборатории обработки сенсорной информации ИППИ РАН. — Даже если бы у нас был всего один тип колбочек и палочки, мы, возможно, могли бы различать цвета, но только при сумеречном освещении, при котором функционируют и палочки, и колбочки. Кроме самих рецепторов нужна соответствующая обработка сигнала. Например, если сигналы от рецепторов разных типов просто сложить, никакой информации о цвете не останется. Зрительная система должна уметь сравнивать сигналы от разных рецепторов, чтобы определить, что сигнал от коротковолновых («синих») колбочек сильнее или слабее, чем от длинноволновых («красных»)».

Палочки (слева) и колбочки весьма небольшие: их длина не превышает 0,06 миллиметра. Фото: Designua/shutterstock

Колбочки и эволюция

Если животное ориентируется в основном на зрение, ему хорошо бы уметь различать множество разных оттенков, а для этого нужно больше двух типов колбочек.

Мужское и женское

Несмотря на то что тема равенства полов стала очень модной, по части восприятия цветов мужчины и женщины заметно различаются. Скажем, нарушения цветового зрения чаще бывают у мужчин. И дело здесь не только в том, что гены, мутации в которых вызывают потерю какого-нибудь типа колбочек, расположены на Х-хромосоме, которая у сильного пола одна.

Восприятие цветов, как и звуков, зависит от уровня тестостерона в организме. У самых женственных мужчин рецепторов к этому гормону в разы больше, чем у самых крепких женщин. И в частности, их очень много на нейронах головного мозга, особенно в затылочной доле коры — там, куда приходят зрительные сигналы. В итоге у мужчин образуется больше связей между нейронами зрительной коры и зрительных зон таламуса, откуда сигналы попадают в затылочные доли. Кроме того, по не до конца ясным причинам мужчины лучше отслеживают быстро сменяющие друг друга мелкие детали, а женщины хорошо различают оттенки близких цветов. Возможно, эти особенности развились у мужчин из-за того, что в древнем обществе они занимались охотой, а женщины собирали растения и грибы.

Охота требовала от древних мужчин умения различать быстро движущиеся детали. Фото: Dieter Hawlan/shutterstock

Исследование 2001 года показало, что среди женщин гораздо чаще встречаются индивидуумы с четырьмя (а не тремя) типами пигментов — молекул, лежащих в основе работы колбочек (в палочках пигменты тоже есть, но другие). Это одна из причин, почему женщина в среднем может назвать больше разных оттенков, чем мужчина. Наконец, колбочки мужчин настроены на свет чуть больших длин волн, чем зрительные рецепторы женщин: по-видимому, сильный пол при прочих равных видит мир более красным .

Цветотерапия

Этот раздел альтернативной медицины учит, что различные заболевания, вплоть до рака, можно лечить, давая больному смотреть на определенный цвет в зависимости от того, что болит. Вот только рекомендации к лечению во многих клиниках разные, общего стандарта нет . А это первый звоночек, что цветотерапия — метод непроверенный. Разумеется, цвета, которые человек видит регулярно, могут влиять на его эмоции и на восприятие мира. Но это верно и для любых других элементов обстановки. А изменение настроения — это еще не лечение, хотя вещь в большинстве случаев полезная.

Некоторые психологи активно используют в практике цветотерапию, но серьезного научного обоснования у этого подхода нет. Фото: Olimpik/shutterstock

Хотя зрительная система — одна из самых изученных сенсорных систем, оценить, насколько восприятие цветов изменилось в ходе эволюции и как оно отличается у животных разных видов и внутри видов, непросто. Приходится учитывать и число различных типов зрительных пигментов, и строение сетчатки и зрительных областей мозга, и пол, и даже родной язык — если мы говорим о людях. Словесные описания одного и того же предмета при одинаковом освещении от разных авторов могут заметно отличаться. А если тестировать цветовое зрение, не прибегая к словам (например, выделять «особый квадрат» из десятков одинаковых), выяснится, что два человека могут различать два цвета, но мы никогда не узнаем, что точно они видят при этом. Ну и конечно, нейронные сигналы, возникающие в мозге в ответ на какой-либо цвет, совершенно индивидуальны.

Светлана Ястребова