Прокладка оптического кабеля по воздуху: цена, методы, планы работ. Как проложить оптоволоконный кабель Проложить оптоволоконный кабель

Монтажные работы по прокладке оптоволоконного кабеля осуществляются на основании проектной документацией и с соблюдением нормативных требований. Выбор способа прокладки находит отражение и обосновывается в проекте. Он должен соответствовать типу кабеля, а выбранный кабель – способу и условиям его монтажа.

Наиболее распространены четыре варианта:

  1. Прокладка кабеля в грунт.
  2. Прокладка в кабельной канализации.
  3. По воздуху (подвес кабеля по столбам, опорам и фасадам зданий).
  4. Внутренняя прокладка (внутри зданий).

Прокладка в грунт

Прокладка оптоволокна в землю – доступный и надежный способ монтажа ВОЛС. Этот способ используется повсеместно, за исключением грунтов, склонных к мерзлотным деформациям.

Основные варианты:

  • траншейный способ, при котором кабель укладывается непосредственно в грунт (траншею) и который применяется обычно при прокладке кабеля с ленточным покрытием или защитной броней;
  • бестраншейный способ с использованием кабелеукладчика.

Допустимо применение и иных способов механизированной прокладки оптоволокна, но из-за своей дороговизны они не получили широкого распространения и используются, когда нет менее затратных альтернатив. Ручная прокладка кабеля используется нечасто – в случаях, когда нет возможности подъезда техники и пространства для выполнения таких работ.

При строительстве ВОЛС большой протяженности (магистральные ВОЛС) оптимальным решением является прокладка оптоволоконного кабеля в защитных полиэтиленовых трубах (ЗПТ). Благодаря специальной технологии вдувания кабеля в ЗПТ и наличия в трубах внутреннего слоя смазки, при таком способе проведения монтажных работ удобнее, проще и быстрее прокладывать кабели большой длины.

Прокладка в кабельной канализации

В городах и населенных пунктах монтаж оптоволоконного кабеля под землей часто выполняется в каналах кабельной канализации. Для этой цели используются как уже имеющиеся каналы, например, телефонные, так и новые – специально проложенные трубы. Какое решение будет лучшим, определяется исходя из фактических условий и планов по эффективной эксплуатации канализационной системы.

В качестве кабельных каналов для кабеля используются бетонные, асбестоцементные или пластиковые трубы. Прокладка осуществляется методом тяжения. Необходимые операции по соединению участков кабеля производятся в кабельных шахтах или колодцах. Отсутствие земляных работ при таком способе монтажа ВОЛС снижает затраты работ.

Монтаж оптоволоконного кабеля по воздуху

Прокладка ВОЛС по воздуху обычно целесообразна только при невозможности проложить кабель в грунте или канализации. С точки зрения надежности этот способ уступает последним двум, но снижает трудоемкость работ и сокращает затраты.

Для монтажа воздушных линий используется:

  • прокладка кабеля по опорам (столбам) действующей ЛЭП или линии связи;
  • оптический кабель в грозозащитном тросе (установка или замена троса);
  • подвеска самонесущего оптоволоконного кабеля;
  • навивка тонкого оптоволокна на фазный (нулевой) провод ЛЭП.

Внутренняя прокладка

Прокладка оптоволоконного кабеля внутри здания используется при монтаже внутридомовых, офисных и производственных ВОЛС. В этих случаях допустимо применение кабелей легкой и гибкой конструкции, но этот фактор потребует сокращения углов поворота линии и внимательного отслеживания соблюдения параметра изгиба. Монтажные работы упрощаются за счет возможности использования уже имеющихся каналов. Прокладка осуществляется открытым (в подвалах, чердачных, технических помещениях) и скрытым способом – за фальш-панелями, потолками или полами.

Основные преимущества воздушной прокладки кабеля между зданиями:

  1. Легкость и оперативность монтажа (в отличие от подземной прокладки кабеля, данный вид монтажа не влечет за собой рытье траншей, уборки мусора и т.д.).
  2. Доступность (при подземной прокладке длина кабеля, соединяющего здания больше, чем в случае соединения по воздуху).
  3. Скорость и минимизация затрат на ремонт в непредвиденных ситуациях.
  4. Строительство воздушной линии - довольно бюджетный вариант. Это объясняется тем, что она почти не требует использования сложной техники, кранов и др.

Недостатки воздушной прокладки:

  1. Подверженность внешним помехам (гроза, дождь, мороз).
  2. Возможность повреждений от физического воздействия других предметов (трение).
  3. Образование трещин при повышенной влажности, что грозит заменой линии.
  4. Малый срок эксплуатации.

Воздушные линии коммуникаций

Рис.1. Два здания соединены воздушной линией связи (воздушкой)

На изображении:

1 – объекты соединения (обычно, это жилые дома, офисы, квартиры),
2 – стальной канат (провод, катанка, несущий трос),
3 – телефонный кабель.

Это наиболее простая схема того, что нужно получить по окончанию монтажных работ.

Применение витой пары без фиксирующего металлического каната чревато быстрой порчей изделия. Это обусловлено тем, что телефонный кабель не рассчитан на агрессивное влияние сред (резкие порывы ветра, талый снег, обледенение). В идеале трос должен быть изолирован. В обычных случаях (при кабельной длине до 80 м) диаметр изоляции составляет 1 - 1.5 мм 2 . Покрытие кабеля служит антикоррозийной защитой. В противном случае, из-за своего малого сечения, изделие совсем скоро выйдет из строя (через год).

Установка троса происходит путем фиксации к твердым выступающим предметам (арматура, мачты). Тут важно ограничить прикосновения троса c креплением на каждом здании. Отличия потенциалов могут привести к тому, что во время протекания тока по металлической конструкции, при наводке на витую пару , может возникнуть короткое замыкание. Заземление грузозащитного троса является обязательным. В редких случаях заземление происходит односторонне. Так как двусторонний метод является более эффективным. При этом нужно или с одной из сторон заземлять через емкость, или разделить стальную катанку на равные части, прибегнув к вставке пластины из стеклотекстолита.

Воздушная линия посредством витой пары

Кабель для подключения к сети (витая пара ), подвергающийся реалиям сурового климата, подвержен очень большой нагрузке. Витая пара, соединяющая дома еще больше страдает от возложенных на нее задач. Оптимальным выбором для прокладки кабеля по воздуху станет использование материала, предназначенного для наружной натяжки. Он отличается соответствующими техническими характеристиками. В лучшем случае линия связи обрабатывается термоактивной полимерной смолой (компаунд) или покрыта специальной водоотталкивающей краской (гидрофобом). Кабель с экраном полностью исключен из возможных вариантов. При угрозе замыкания такой экранированный кабель не поможет решить проблему, да и по цене он дороже.

Для обеспечения защиты установок, подсоединенных к воздушной линии, от всевозможных перепадов напряжения, идеальным решением станут грозозащиты . Это специальный диодный мост, который реагирует на разность потенциалов между защитными кабелями, и замыкает их накоротко. Так же возможен отвод излишек статистического тока в заземление.

При прокладке кабеля воздушным способом коммуникационная линия крепится к защитному проводу. Фиксировать можно любым диэлектриком, не входящий в контакт с окружающей средой. Считается, что оптимальным решением станут капроновые стяжки . С использованием стяжек, витая пара соединяется с несущим тросом в точках соединения, на промежутке 50-70 см. Нельзя допускать натяжку кабеля, чтобы избежать ситуации, когда вся нагрузка идет на него, а трос не выполняет свою основную функцию – несущую. Провисание витой пары должно быть в пределах разумного (на рис.1 для наглядности приведен неправильный вариант установки). Стяжки натягиваются максимально плотно, чтобы избежать всякого трения между изделиями. В случае излишней перетяжки может возникнуть повреждение конструкции кабеля (нужно, чтобы крепежная система имела плоскую поверхность, а ее ширина не менее 5-7 мм).

Прокладка кабеля по воздуху

Необходимые материалы:

  • оптоволокно
  • несущая проволока
  • фиксаторы (стяжки).

Трос должен соответствовать размеру b+l, где l – дополнительная длина, рассчитанная на послабление и крепеж (рис.2).

Рис.2. Схематический план воздушки

  1. Размотка кабеля на кровле первого здания.
  2. Замерить необходимое расстояние, на которое будет прокладываться воздушка от точки А до места установки оборудования (в нормальных условиях можно сделать расчет с запасом). На отмотанном кабеле нужно пометить точку А. Найти соответствующую пометку на проводе (предварительно отмерив, расстояние от крепления и до точки А, и обозначив ее на тросе). Трос укладывается параллельно кабелю (точка А кабеля к точке А провода).
  3. Отмерить на металлическом проводе длину (а+d) от точки А здания 1 (d – это погрешности замеров, которые обусловлены провисанием и отдаленностей от края точек А - объектов 1 и 2).
  4. На протяжении заданной длины необходимо провести равномерное распределение стяжек. Чел 1 и чел 3 фиксируют положение троса (рис.3), чел 2 крепит его. Кабель не должен висеть намного ниже троса.

Рис.3. Технология крепления кабеля к тросу

Можно считать, что подготовка воздушки к установке пришла к завершению. Часть незадействованного кабеля, который предназначен для 2 объекта, бережно сворачивается в бухту и фиксируется скотчем к проводу (так он не будет составлять дискомфорта во время прокладочных работ).

Последнюю итерацию натяжки выполняют следующими методами:

  • Кабель можно перетянуть внизу и сделать натяжку с 1 объекта.
  • Осуществить выстрел между крыш двух зданий путем закидывания дротика с леской (можно воспользоваться арбалетом или газовым ружьем), где фиксируется конец воздушки на 1кровле. Дальше следует вытянуть изделие с кровли 2, используя прикрепленную леску.

Метод №1: метод натяжки кабеля

Имея в наличии 2 "буферных" троса (тонкий канат, плотная нить, которая выдержит вес конструкции), первый конец провода крепится к 1 кровле, а второй – к капроновой нити или веревке 1, после чего, вдоль здания опускается вниз (рис.4). Затем необходимо перенести конец веревки к объекту 2 (с учетом препятствий в виде растительности или других высоких выступов).

С крыши 2 спускается конец веревки 2. Концы изделий связываются между собой и поднимаются на 2 объект. В общем, сейчас основной задачей является проконтролировать качественный процесс перетяжки конца веревки со смотанным кабелем на 2 объект. Теперь натягивается провод, разумеется, с допустимым провисанием. Провод крепко фиксируется на 2 объекте, затем идет прокладка кабеля и заземление провода.

Рис. 4 Первый метод

Метод №2: метод натяжки

С кровли 2 в направлении кровли 1 прокладчик запускает с помощью оружия дротик с прикрепленной леской. Его берет установщик, который расположен на 1 кровле. Прокладчик 1 фиксирует леску к специально приготовленному кабелю, а установщик на 2 кровле по одобрительному сигналу от прокладчика на кровле 1 тянет кабель на себя (рис.5).

Рис.5. Второй метод натяжения оптического кабеля при прокладке его по воздуху

Для осуществления последнего метода часто применяют модель УЗК, получившую название пистолет для заброски воздушки Laserline.

Основные характеристики ружья для прокладки кабеля Laserline:

  • Оружие оснащено лазером, что упрощает процесс прицела.
  • Размер лески, намотанной на катушку, составляет 465 м, то есть можно делать выстрелы на дальние расстояния.
  • Максимальный вылет лески - 40м.
  • Ружье идет в комплекте с газовыми баллонами, заправляемые CO2 (Рис. 6)
  • Для удобства можно запастись комплектом дротиков к нему.

Внимание! Перед использованием необходимо ознакомиться с инструкцией.

Компания ООО "Техкабельсистемс" осуществляет поставки оптоволокна, оптических муфт, арматуры и инструмента для прокладки оптического кабеля воздушным способом (между опорами, зданиями). Цена изделий указана в карточках товара или доступна по запросу. Из данной статьи вы узнаете, как протянуть, проложить кабель по воздуху: методы монтажа, условия крепления, стоимость работ и правила обращения с изделиями.

Говорят, прокладка оптического кабеля по дну океана обходится англо-французскому концерну Алкатель в миллиарды долларов. Одна жилка стекла толщиной 125 мкм способна обеспечить скорость сотни терабит/сек. Понятно, находится порядком желающих связать материки. Нельзя сказать, чтобы соединение было слишком надежным. В 2011 году новости сообщили: одна бабушка оставила без интернета страну. Давайте посмотрим…

Передача информации по волоконно-оптическому кабелю

Пенсионерка из Грузии искала медь… Натолкнулась на кабель местной телекоммуникационной компании. Интерната лишилась большая часть Грузии, практически полностью Армения. Современное оптоволокно способно на большие подвиги. Первые исследования начались в середине 19-го века, в следующем представлен на суд публики ряд изобретений:

  1. Гастроскоп на основе оптоволокна разработан в 1956 году университетом штата Мичиган.
  2. В 1963 году Дзюнъити Нисидзава впервые применил оптическое волокно для связи.
  3. Первая работоспособная оптическая линия связи продемонстрирована в 1965 году Германией.
  4. Первый оптический кабель с приемлемым затуханием разработали сотрудники STC Чарльз Као, Джордж Хокем. Присуждена Нобелевская премия. Учеными поднят вопрос чистоты стекла, показаны способы улучшения параметров корректировкой технологических процессов.

Передача информации по кабелям эксплуатирует способность света переотражаться внутренними стенками. Внутри остается большая часть энергии. Процесс полного отражения на грани стекла начинается под углом 38 градусов. Сигнал затухает медленно. Концерн Алькатель применяет репитеры для поддержания уровня. Каждый весит полтонны. Можете представить, насколько сложна прокладка волоконно-оптического кабеля дном океана.

Вначале отрез длиной 4000 км грузится три недели на корабль. Процесс проходит со скоростью 100 метров в минуту. Внутри огромного отсека рабочие укладывают кабель кольцами вокруг вертикального стального стержня, слоями, по принципу катушки. Занимается несколько человек, вес изделия сравнительно высок. Каждый кабель сформирован множеством переплетенных нитей стекла, сверху жгут покрывается стальным экраном, придающим изделию прочность.

Для производства кабелей разработана технологическая линия. Будущий экран из полосы свивается полукольцом, внутрь закладывается жила оптоволокна. Конструкция протягивается через ряд стальных роликов уменьшающегося калибра, напоминает цикл изготовления медных кабелей. По шву проходится сварка, кабель готов. Осталось покрыть влагонепроницаемой оболочкой. Кабель выдерживает огромные нагрузки, аналогичного рода испытания проходят любые изделия. В РФ, по нормативам, волосок стекла выдерживает усилие на разрыв 7 кг.

Методы стыковки оптического кабеля

Способы прокладки оптических кабелей мало нового сообщат традиционным, методика стыковки иная. Главным требованием здесь является отсутствие механических повреждений. Если волокно поцарапать, часть энергии будет теряться. Качество соединения характеризуется величиной потерь в дБ. Достигнувший цифры 0,4 дБ стык считается браком. Хорошее сварное соединение обеспечит показатель 0,01 дБ. Чтобы выдержать жесткие требования, выпускается специальное оборудование производства работ. Сегодня получили распространение следующие способы соединения оптических кабелей, монтажа разъемов.

Сварка

Является самым простым способом, подвластны любые типы оптического кабеля. Параметры которых забиты в программный модуль аппарата. Посещая меню, техник выбирает нужный тип. Процедура схожая.

Для начала найдем гильзу (КДЗС) на волоконно-оптический кабель соответствующей толщины. Изоляция зачищается на пару-тройку сантиметров. Кевларовая оплетка снимается (если имеется). После жила обжигается сварочным аппаратом специальным захватом. Необходимо, чтобы избавиться окончательно от изоляции. Конец обрезается (обламывается) резаком (конструктивно входит в состав сварочного аппарата). Помогает сечению стать идеально гладким. Поочередно обрабатываются оба конца, на один наденем термоусадочную гильзу.

Процесс сварки занимает считаные секунды, для контроля качества аппарат может транслировать видео (не нравится – переделайте). На дисплее появляется значение потерь соединения в дБ. Сотые доли.

Механические соединения

Обладают достоинством: разбираются н-ное количество раз. Для исполнения работ приобретается специальная муфта, без инструмента трудно обойтись: придется зачистить изоляцию на указанное расстояние (десятки мм). После кончики ровно срезаются при помощи приспособления, напоминающего стеклорез. Концы заводятся в муфту, зажимаются. Монтаж считается оконченным. Одну муфту используем для волоконно-оптических жил разного диаметра, применяя специальные переходные вкладыши. Немного меняется мелочами процесс подготовки.

Коннекторы

На входе распределительных коробок, при подключении оборудования пользователей чаще используют коннекторы. Специальные разъемы демонстрируют большие потери, позволяя бесчисленное количество раз изменять коммутацию. У каждой фирмы собственные технологии. Гиганет разработана инструкция, комплектующая специализированные инструменты.

  • Зачистка кабеля – искусство. На указанную длину снимаются внешняя изоляция, оплетка, зачищается внутренний слой (до жилы).

В последнем случае действовать нужно аккуратно, освобождая стекло от излишков материала сантиметрами. Важно не сломать жилу, не отколоть. Малейшая царапина увеличивает потери через стенки. Обломки стекла легко занозят кожу.

  • Зачистка окончена, пора одевать изоляторы, корпус разъема. Центральная жила заведомо протаскивается с большим запасом.
  • Разъем зальем компаундом, идущим в комплекте, пока через центральное отверстие не проклюнется маленькая капелька. Важно не перестараться, не объединить внешний, внутренний круги коаксиала.
  • Несущее стекловолокно смазывается отвердителем. Стыковка производится быстро, чтобы смесь не успела схватиться.
  • После стеклорезом (продается фирмой Гиганет) жила надрезается, обламывается с небольшим запасом.
  • Начинается процесс шлифовки шкуркой малой крупности. Для контроля качества послужит микроскоп. Если обнаружен скол ниже поверхности контакта разъема, работу остается начать сначала. Шлифовка ведется, пока поверхность не станет идеально ровной.
  • Затем следуют доводочные процедуры, изделие можно применять.

Как прокладывать оптический кабель

Внутри подъездов, домов оптический кабель прокладывается, следуя обычным нормам. Поверхность несгораемая, для монтажа используется упаковочная лента, набиваемая на дюбель-гвозди. Фактически кабель приравнивается к связным проводам. Попробуем оценить пригодность!

  1. Оптический кабель для прокладки в грунте (земле) снабжен особой маркировкой. Присутствует буква З после ОК (оптический кабель). Некоторые правила прокладки оптического кабеля, способ маркировки указаны ГОСТ Р 52266.
  2. Оптический кабель для внутренней прокладки маркируется литерой С.
  3. Оптический кабель для внешней прокладки как таковой не существует. Ассортимент включает подводный (Н), воздушный (В), полевой (П) кабели.
  4. Особо гибкие шнуры помечаются буквой Ш. Можно гнуть, забыв ограничения.

Прокладка, монтаж оптических кабелей ведутся согласно пожароопасности. Если оплетка сделана с учетом особенности, к маркировке прибавляются литеры:

  • НГ – не распространяющий горение.
  • LS (low smog) низкое выделение дыма, газа при горении.
  • HF – пониженная коррозийная активность продуктов сгорания.
  • FR (fire resistance) – повышенная огнестойкость.

Пригодится, правила использования почитаете во втором разделе ПУЭ 6. Сейчас не в моде, таблицы 2.1.2, 2.1.3, приводят сведения, дающие живое представление, как принято вести монтаж. Речь идет об электрике, сомневающихся спросим – не наблюдали, как горят волоконно-оптические кабели для внешней прокладки? При некоторой мощности начинается резонансный процесс, в ходе которого плотность энергии столь велика, что температура достигает 10000 градусов. Хватит устроить пожар.

И хотя один тонкий волосок стекла может снабжать интернетом район, не забывайте: волоконно-оптические кабели для внутренней прокладки плохо изучены. Хотя первая телефонная сеть Москвы заработала в 1986 году, последнюю устаревшую (1949 год) убрали в 2011. Явления огня в волоконно-оптических кабелях ещё даже не исследовалось, хотя провайдеры поголовно перешли на технологию. Увидите, единого стандарта на прокладку даже не имеется. ГОСТ целиком ссылается на рекомендации более узких технических условий. Именно так регламентируются рабочая температура, минимальный радиус изгиба, условия эксплуатации. Даже инструменты не перечисляются, отечественных наработок крайне мало, каждая фирма гнет свою линию.

Прокладка по траншее

Отдельно по монтажу следует почитать Руководство по прокладке, монтажу и сдаче в эксплуатацию волоконно-оптических линий связи. Для исключения помех кабель прокладывается внутри трубы ПНД с внутренним диаметром 25 мм, внешним – 32 мм. Не допускается рядом тянуть связные сети из меди. Разрешается прокладка оптических кабелей в кабельной канализации рядом (количеством 5-6). При необходимости в будущем докладки медных проводов связи следует применять трубу ПНД, лучше заранее предусмотреть вариант, сделать, как написано выше. Требование распространяется на участки длиной более 2 км.

Стандарт указывает, чем предваряется прокладка оптического кабеля связи:

  1. Согласно тексту, труба ПНД поставляется бухтами. Используя факт, можно сказать, годится ли лежащая на прилавке.
  2. Если труба под волоконно-оптический кабель застревает в канале меж колодцами, нужно несколько раз провернуть.
  3. Обрезка в траншее ведется, оставляя запас. Затем на входе в канал труба стягивается хомутом, удерживается на месте.

Прочие нормы по поводу укладки в грунт аналогичного рода. Смотрятся доморощенным, но прокладка оптического кабеля в канализации превращается в ряд простых дежурных задач. По монтажу можно также заглянуть в СНиП 3.05.07. Приведен раздел, касающийся прокладки трассы волоконно-оптического кабеля в здании. Указывается, что расстояние между крепежом не превышает одного метра, а при проходе углов на каждой поверхности линия пристреливается к стене.

Документы старые. Нигде не говорится о том, что оптический кабель наружной прокладки может следовать по воздуху. Выпущены давно самонесущие разновидности. Некоторые главы по волоконно-оптическим кабелям актуальны и сегодня.

17 Прокладка и монтаж кабеля ТСВ 103х2х0,5 1 км 115 000,00
1 Прокладка и монтаж ВОК 8 1 км 40 000,00
2 Прокладка и монтаж ВОК 12 1 км 40 000,00
3 Прокладка и монтаж ВОК 16 1 км 40 000,00
4 Прокладка и монтаж ВОК 24 1 км 40 000,00
5 Прокладка и монтаж ВОК 32 1 км 40 000,00
6 Прокладка и монтаж ВОК 48 1 км 50 000,00
7 Прокладка и монтаж ВОК 64 1 км 50 000,00
8 Прокладка и монтаж ВОК 96 1 км 60 000,00
9 Строительно-монтажные работы в помещения (без монтажа оконечного оборудования) 1 работа 12 000,00
10 Прокладка и монтаж кабеля 10х2х0,5 - 50х2х0,5 1 км 100 000,00
11 Прокладка и монтаж кабеля 100х2х0,5 1 км 115 000,00
12 Прокладка и монтаж кабеля 200х2х0,5 1 км 134 000,00
13 Прокладка и монтаж кабеля 300х2х0,5 1 км 169 000,00
14 Прокладка и монтаж кабеля 400х2х0,5 1 км 187 000,00
15 Прокладка и монтаж кабеля 500х2х0,5 1 км 224 000,00
16 Прокладка и монтаж кабеля 6 00х2х0,5 1 км 260 000,00

Прокладка оптического кабеля внутри зданий

СМР по строительству линий связи вне зоны г. Москв

(прокладка волоконно-оптического кабеля в грунт)

(без стоимости материалов)

Прокладка и монтаж ВОК 8 - ВОК 32 до 500 м.

1 работа.

180 000,00

Прокладка и монтаж ВОК 8 - ВОК 32 от 501 м. до 1 км.

1 работа.

262 000,00

Прокладка и монтаж ВОК 8 - ВОК 32 свыше 1 км.

1 км

262 000,00

Прокладка и монтаж ВОК 48 - ВОК 64 до 500 м.

1 работа.

233 000,00

Прокладка и монтаж ВОК 48 - ВОК 64 от 500 м. до 1 км.

1 работа.

314 000,00

Прокладка и монтаж ВОК 48 - ВОК 64 свыше 1 км.

1 км

314 000,00

Видео прокладка оптического кабеля


Мы работаем с наличным, с безналичным типом расчетов, НДС.

В черте городов и других населенных пунктов прокладка волоконно-оптических кабельных трасс вне зданий и сооружений производится в основном в телефонной канализации. Как правило, телефонная канализация устраивается из отдельных блоков (бетонные, асбестоцементные или пластмассовые трубы круглого сечения с внутренним диаметром 100 мм) на глубине от 0.4 до 1.5 метра, которые состыкованы герметично между собой. Смотровые колодцы, имеющие на своих стенах специальные консоли для укладки кабеля, размещаются на канализационной телефонной трассе через 40-100 метров.
Кабели для прокладки в кабельную канализацию — это, как правило, кабели с гидрофобным заполнителем. Эти кабели обычно изготавливаются с использованием металлического ламината (алюминиевая фольга или гофрированная стальная лента) для защиты от влажности. (Возможно также изготовление неметаллического кабеля.) Гидрофобный заполнитель препятствует перемещению влаги в продольном направлении и в то же время защищает волокна.

В телефонной канализации должен быть предусмотрен свободный канал, в котором прокладывается оптический кабель. При постройке канала в нем оставляется проволока, с помощью которой протяжку можно сделать быстрее и качественнее. При отсутствии проволоки протяжку кабеля осуществляют с помощью устройства протяжки каналов. Чаще всего это стеклопластиковый упругий пруток длиной до 150 м и диаметром 10 мм и более, на большой катушке (см. рис).

Прокладка оптического кабеля по телефонной канализации.

Кабельная канализация представляет из себя конструкцию, состоящую из труб, смотровых колодцев, устройств для монтажа и обслуживания кабельного хозяйства. К кабельной канализации можно отнести коллекторы, специализированные металлоконструкции мостов, вводные шахты. Подземная кабельная канализации строится с расчетом максимального пролета между смотровыми колодцами до 130 м., колодцы соединяются между собой одиночными или сгруппированными трубами из асбоцемента, полиэтилена, поливинилхлорида или пластика, диаметром 100мм. Трубы укладываются на глубину от 0,4 до 1,8 м.

Смотровые колодцы различаются по материалу исполнения, конструкции, размерам и разделяются на:

  • Проходные (а)
  • Поворотные (б)
  • Разветвительные (в).

Колодцы могут изготавливаться из кирпича и железобетона, выдерживать различные нагрузки, в зависимости от места установки, иметь различную конфигурацию, в зависимости от количества вводных каналов.

Кабельная канализация позволяет быстро расширять существующую кабельную сеть, обеспечивает доступ для проверки, переконфигурации, ремонта и замены оптического кабеля.

Прокладка оптического кабеля по кабельной (телефонной) канализации.



Прокладка оптического кабеля по кабельной канализации может осуществляться ручным и механизированным способами. При ручном методе прокладки используется устройство для заготовки канала (УЗК), которое представляет собой стеклопластиковый пруток, диаметром 11мм. и длинной 150м.УЗК вводится в канал, по которому предполагается прокладывать оптический кабель и проталкивается до смежного колодца, в котором к концу прутка крепится кабель, после чего УЗК вытягивают обратно. При протяжке кабеля могут использоваться компенсаторы кручения (вертлюг) и кабельные чулки (для быстрого крепления кабеля к УЗК).

При прокладке оптического кабеля в кабельной канализации не редко встречаются случаи обрушения, излома, деформации кабельных каналов, в таких случаях можно попытаться пройти место обрушения с помощью составных палок для протяжки. Палки для протяжки кабеля представляют собой дюралевые отрезки трубы длинной 1 метр, с резьбовыми соединениями с обоих сторон.Палки последовательно скручиваются и вводятся в кабельный канал, поскольку конструкция из палок более жесткая чем УЗК, с их помощью можно пройти места обрушения.


Волоконно-оптические ли нии связи (ВОЛС) – система в основе которой лежит оптоволоконный кабель, предназначена для передачи информации в оптическом (световом) диапазоне. В соответствии с ГОСТом 26599-85 термин ВОЛС заменен на ВОЛП (волоко́нно-опти́ческая ли́ния переда́чи), но в повседневном практическом обиходе по прежнему применяется термин ВОЛС, поэтому в данной статье мы будем придерживаться именно его.

Линии связи ВОЛС (если они корректно проведены) по сравнению со всеми кабельными системами отличаются очень высокой надежностью, отличным качеством связи, широкой пропускной способностью, значительно большей протяженностью без усиления и практически 100% защищенностью от электромагнитных помех. В основе системы лежит технология волоконной оптики – в качестве носителя информации используется свет, тип передаваемой информации (аналоговый или цифровой) не имеет значения. В работе преимущественно используется инфракрасный свет, средой передачи служит стекловолокно.

Область применения ВОЛС

Оптоволоконный кабель применяется для обеспечения связи и передачи информации уже более 40 лет, но из за высокой стоимости широко использоваться стал сравнительно недавно. Развитие технологий позволило сделать производство экономичней и стоимость кабеля доступней, а его технические характеристики и преимущества перед другими материалами быстро окупают все понесенные расходы.

В настоящее время, когда на одном объекте используется сразу комплекс слаботочных систем (компьютерная сеть, СКУД, видеонаблюдение, охранная и пожарная сигнализации, охрана периметра, телевидение и др.), обойтись без применения ВОЛС не возможно. Только использование оптоволоконного кабеля делает возможным одновременное применение всех этих систем, обеспечивает корректную стабильную работу и выполнение их функций.

ВОЛС все чаще применяется как основополагающая система при разработке и монтаже , в особенности для многоэтажных зданий, зданий большой протяженности и при объединении группы объектов. Только Волоконно-оптические кабели могут обеспечить соответствующий объем и скорость передачи информации. На основе оптоволокна могут быть реализованы все три подсистемы , в подсистеме внутренних магистралей оптические кабели применяются одинаково часто с кабелями из витых пар, а в подсистеме внешних магистралей они играют доминирующую роль. Различают оптоволоконный кабель для внешней (outdoor cables) и внутренней (indoor cables) прокладки, а так же соединительные шнуры для коммуникаций горизонтальной разводки, оснащения отдельных рабочих мест, объединения зданий.

Не смотря на относительно высокую стоимость, применение оптоволокна становится все более оправдано и находит все более широкое применение.

Преимущества волоконно-оптических линий связи (ВОЛС ) перед традиционными «металлическими» средствами передачи:

  • Широкая полоса пропускания;
  • Незначительное ослабление сигнала, например применительно к сигналу 10МГц оно составит 1,5 дБ/км по сравнению с 30дБ/км для коаксиального кабеля RG6;
  • Исключена возможность возникновения «земляных петель», так как оптоволокно является диэлектриком и создает электрическую (гальваническую) изоляцию между передающим и принимающим концом линии;
  • Высокая надёжность оптической среды: оптические волокна не окисляются, не намокают, не подвержены электромагнитному воздействию
  • Не вызывает помех в соседних кабелях или в других оптоволоконных кабелях, так как носителем сигнала является свет и он полностью остается внутри оптоволоконного кабеля;
  • Стекловолокно абсолютно не чувствительно к внешним сигналам и электромагнитным помехам (ЭМП), не имеет значения рядом с каким блоком питания проходит кабель (110 В, 240 В, 10 000 В переменного тока) или совсем рядом от мегаватного передатчика. Удар молнии на расстоянии 1 см. от кабеля не даст ни каких наводок и не отразится на работе системы;
  • Информационная безопасность - информация по оптическому волокну передаётся «из точки в точку» и подслушать или изменить ее можно только путем физического вмешательства в линию передачи
  • Оптоволоконный кабель легче и миниатюрней – его удобней и проще укладывать чем электрический кабель такого же диаметра;
  • Сделать ответвление кабеля без повреждения качества сигнала не возможно. Любое вмешательство в систему сразу обнаруживается на принимающем конце линии, это особенно важно для систем обеспечения безопасности и видеонаблюдения;
  • Пожаро- и взрывобезопасность при изменении физических и химических параметров
  • Стоимость кабеля снижается с каждым днем, его качество и возможности начинают превалировать над затратами на построение слаботочных на базе ВОЛС

Идеальных и безупречных решений не существует, как и любая система, ВОЛС имеет свои недостатки:

  • Хрупкость стекловолокна – при сильном изгибании кабеля возможна поломка волокон или их замутнение из-за возникновения микротрещин. Для устранения и минимизации этих рисков применяются усиливающие кабель конструкции и оплетки. При монтаже кабеля необходимо соблюдать рекомендации производителя (где, в частности, нормируется минимально допустимый радиус изгиба);
  • Сложность соединения в случае разрыва – требуется специальный инструмент и квалификация исполнителя;
  • Сложная технология изготовления, как самого волокна, так и компонентов ВОЛС;
  • Сложность преобразования сигнала (в интерфейсном оборудовании);
  • Относительная дороговизна оптического оконечного оборудования. Однако, оборудование является дорогим в абсолютных цифрах. Соотношение цены и пропускной способности для ВОЛС лучше, чем для других систем;
  • Замутнение волокна вследствие радиационного облучения (однако, существуют легированные волокна с высокой радиационной стойкостью).

Монтаж систем ВОЛС требует от исполнителя соответствующего уровня квалификации, так как концевая заделка кабеля производится специальными инструментами, с особой точностью и мастерством в отличии от других средств передачи. Настройки маршрутизации и переключения сигналов требуют специальной квалификации и мастерства, поэтому в этой области не стоит экономить и бояться переплатить профессионалам, устранение нарушений в работе системы и последствий не правильного монтажа кабеля обойдется дороже.

Принцип действия оптоволоконного кабеля.

Сама идея передачи информации при помощи света, не говоря уже о физическом принципе работы большинству обывателей не совсем понятно. Мы не будем глубоко вдаваться в эту тему, но постараемся объяснить основной механизм действия оптоволокна и обосновать такие высокие показатели его работы.

Концепция волоконной оптики опирается на фундаментальные законы отражения и преломления света. Благодаря своей конструкции стекловолокно может удерживать световые лучи внутри световода и не дает им «пройти сквозь стены» при передачи сигнала на многие километры. Кроме того не секрет, что скорость света выше.

Волоконная оптика основывается на эффекте преломления при максимальном угле падения, когда имеет место полное отражение. Это явление происходит в том случае, когда луч света выходит из плотной среды и попадает в менее плотную среду под определенным углом. Например, представим себе абсолютно не подвижную гладь воды. Наблюдатель смотрит из под воды и меняет угол обзора. В определенный момент угол обзора становится таким, что наблюдатель не сможет видеть объекты, находящиеся над поверхностью воды. Этот угол называется углом полного отражения. При этом угле наблюдатель будет видеть только объекты, находящиеся под водой, будет казаться, что смотришь в зеркало.

Внутренняя жила кабеля ВОЛС имеет более высокий показатель преломления, чем оболочка и возникает эффект полного отражения. По этой причине луч света, проходя по внутренней жиле, не может выйти за ее пределы.

Существует несколько типов оптоволоконных кабелей:

  • Со ступенчатым профилем – типичный, самый дешевый вариант, распределение света идет «ступеньками» при этом происходит деформация входного импульса, вызванная различной длиной траекторий световых лучей
  • С плавным профилем «многомодовое» – лучи света распространяются с примерно равной скоростью «волнами», длина их путей уравновешена, это позволяет улучшить характеристики импульса;
  • Одномодовое стекловолокно – самый дорогой вариант, позволяет вытянуть лучи в прямую, характеристики передачи импульса становятся практически безупречными.

Оптоволоконный кабель до сих пор стоит дороже чем другие материалы, его монтаж и заделка сложнее, требуют квалифицированных исполнителей, но будущее передачи информации несомненно за развитием именно этих технологий и этот процесс необратим.

В состав ВОЛС входят активные и пассивные компоненты. На передающем конце оптоволоконного кабеля находится светодиод или лазерный диод, их излучение модулировано передающим сигналом. Применительно к видеонаблюдению это будет видеосигнал, для передачи цифровых сигналов логика сохраняется. При передаче инфракрасный диод модулирован по яркости и пульсирует в соответствии с вариациями сигнала. Для принятия и преобразования оптического сигнала в электрический, на принимающем конце, как правило находится фотодетектор.


К активным компонентам относятся мультиплексоры, регенераторы, усилители, лазеры, фотодиоды и модуляторы.

Мультиплексор – объединяет несколько сигналов в один, таким образом для одновременной передачи нескольких сигналов реального времени можно использовать один оптоволоконный кабель. Эти устройства незаменимы в системах с недостаточным или ограниченным числом кабелей.

Существует несколько типов мультиплексоров, они различаются по своим техническим характеристикам, функциям и области применения:

  • спектрального разделения (WDM) – самые простые и дешевые устройства, передает по одному кабелю оптические сигналы от одного или нескольких источников, работающих на различных длинах волн;
  • частотного-модулирования и частотного мультиплексирования (FM-FDM) – устройства достаточно невосприимчивые к шуму и искажениям, с хорошими характеристиками и схемами средней степени сложности, имеют 4,8 и 16 каналов, оптимальны для видеонаблюдения.
  • Амплитудной модуляции с частично подавленной боковой полосой (AVSB-FDM) – с качественной оптоэлектроникой позволяют передавать до 80 каналов, оптимальны для абонентского телевидения, но дороговаты для видеонаблюдения;
  • Импульсно-кодовой модуляции (PCM – FDM)– дорогостоящее устройство, полностью цифровое применяется для распространения цифрового видео и и видеонаблюдения;

На практике часто применяются комбинации этих методов. Регенератор - устройство, осуществляющее восстановление формы оптического импульса, который, распространяясь по волокну, претерпевает искажения. Регенераторы могут быть как чисто оптическими, так и электрическими, которые преобразуют оптический сигнал в электрический, восстанавливают его, а затем снова преобразуют в оптический.

Усилитель -усиливает мощность сигнала до требуемого уровня напряжения тока, может быть оптическим и электрическим, осуществляет оптико-электронное и электронно-оптическое преобразование сигнала.

Светодиоды и Лазеры - источник монохромного когерентного оптического излучения (света для кабеля). Для систем с прямой модуляцией, одновременно выполняет функции модулятора, преобразующего электрический сигнал в оптический.

Фотоприёмник (Фотодиод) - устройство, принимающее сигнал на другом конце оптоволоконного кабеля и осуществляющее оптоэлектронное преобразование сигнала.

Модулятор - устройство, модулирующее оптическую волну, несущую информацию по закону электрического сигнала. В большинстве систем эту функцию выполняет лазер, однако в системах с непрямой модуляцией для этого используются отдельные устройства.

К пассивным компонентам ВОЛС относятся:

Оптоволоконный кабель выполняет функции среды для передачи сигнала. Наружная оболочка кабеля может быть изготовлена из различных материалов: поливинилхлорида, полиэтилена, полипропилена, тефлона и других материалов. Оптический кабель может иметь бронирование различного типа и специфические защитные слои (например, мелкие стеклянные иглы для защиты от грызунов). По конструкции может быть:


Оптическая муфта - устройство, используемое для соединения двух и более оптических кабелей.

Оптический кросс - устройство, предназначенное для оконечивания оптического кабеля и подключения к нему активного оборудования.

Спайки – предназначены для постоянного или полупостоянного сращивания волокон;

Разъемы – для повторного присоединения или отключения кабеля;

Ответвители – устройства, распределяющием оптическую мощность нескольких волокон в одно;

Коммутаторы – устройства, перераспределяющие оптические сигналы под ручным или электронным контролем

Монтаж волоконно-оптических линий связи, его особенности и порядок.

Стекловолокно очень прочный, но хрупкий материал, хотя благодаря защитной оболочке, с ним можно обращаться практически как с электрическим. Однако при монтаже кабеля следует соблюдать требования производителей по:

  • «Максимальному растяжению» и «максимальному разрывному усилию», выраженному в ньютонах (около 1000 Н или 1кН). В оптическом кабеле основное напряжение приходится на силовую конструкцию (укрепленный пластик, сталь, кевлар или их комбинация). Каждый тип конструкции имеет свои индивидуальные показатели и степень защиты, если натяжение превышает предусмотренный уровень, то оптоволокно может быть повреждено.
  • «Минимальному радиусу изгиба» – делать изгибы более плавными, избегать резких сгибов.
  • «Механической прочности», она выражается в Н/м (ньютоны/метры) – защита кабеля от физических нагрузок (на него можно наступить или даже наехать транспортом. Следует быть предельно осторожными и особо обезопасить места пересечения и соединения, нагрузка сильно увеличивается из-за малой зоны контакта.

Оптический кабель обычно поставляется намотанным на деревянные барабаны с прочным пластиковым защитным слоем или деревянными планками по окружности. Внешние слои кабеля наиболее уязвимы, поэтому при монтаже необходимо помнить о весе барабана, беречь его от ударов, падений, предпринимать меры безопасности при складировании. Лучше всего хранить барабаны горизонтально, если же они все-таки лежат вертикально, то их края (ободы) должны соприкасаться.

Порядок и особенности монтажа оптоволоконного кабеля:

  1. До начала монтажа необходимо осмотреть барабаны с кабелем на предмет повреждений, вмятин, царапин. При любом подозрении кабель лучше сразу отложить в сторону для последующего детального изучения или отбраковки. Короткие куски (меньше 2 км.) на непрерывность волокна можно проверить на просвет любым фонариком. Волоконный кабель для инфракрасной передаче так же хорошо передает обычный свет.
  2. Далее изучить трассу на предмет потенциальных проблем (острые углы, забитые кабельные каналы и т.д.), при их наличии внести в маршрут изменения для минимизации рисков.
  3. Распределить кабель по маршруту таким образом, чтобы точки соединения и подключения усилителей находились в доступных, но защищенных от неблагоприятных факторов местах. Важно, чтобы в местах будущих соединений оставался достаточный запас кабеля. Открытые концы кабеля должны быть защищены водонепроницаемыми колпаками. Для минимизации напряжения на изгиб и повреждений от проезжающего транспорта используются трубы. На обоих концах кабельной линии оставляют часть кабеля, его длина зависит от планируемой конфигурации).
  4. При прокладке кабеля под землей его дополнительно защищают от повреждений в локальных точках нагрузки, таких как контакт с неоднородным материалом засыпки, неровностями траншеи. Для этого кабель в траншее укладывают на слой песка 50-150 см. и сверху засыпают таким же слоем песка 50-150 см. Дно траншеи должно быть ровным, без выступов, при закапывании следует удалять камни, которые могут повредить кабель. Следует отметить, что повреждения кабеля могут возникнуть как сразу, так и в процессе эксплуатации (уже после засыпки кабеля), например от постоянного давления, не убранный камень может постепенно продавить кабель. Работы по диагностике и поиску и устранению нарушений уже закопанного кабеля обойдутся намного дороже, чем аккуратность и соблюдение мер предосторожности при монтаже. Глубина траншеи зависит от типа почвы и ожидаемой нагрузки на поверхности. В твердой породе глубина составит 30 см., в мягкой или под дорогой 1 м. Рекомендуемая глубина составляет 40-60 см., при толщине песчаной подстилки от 10 до 30 см.
  5. Чаще всего применяется укладка кабеля в траншею или в лоток прямо с барабана. При монтаже очень длинных линий, барабан помещается на транспортное средство, по мере продвижения машины кабель укладывается на свое место, при этом не стоит торопиться, темп и порядок размотки барабана регулируется вручную.
  6. При укладке кабеля в лоток самое главное не превышать критический радиус изгиба и механической нагрузки. Кабель следует укладывать в одной плоскости, не создавать точек сосредоточенных нагрузок, избегать на трассе резких углов, давления и пересечения с другими кабелями и трассами, не изгибать кабель.
  7. Протяжка оптоволоконного кабеля через кабельные каналы аналогична протяжке обычного кабеля, но не стоит прилагать излишних физических усилий и нарушать спецификации производителя. При использовании скоби хомутов помните, что нагрузка должна ложиться не на внешнюю оболочку кабеля, а на силовую конструкцию. Для уменьшения трения можно использовать тальк или гранулы из полистирола, по поводу применения других смазок необходимо консультироваться с производителем.
  8. В случаях, если кабель уже имеет концевую заделку, при монтаже кабеля следует быть особенно внимательными, что бы не повредить разъемы, не загрязнить их и не подвергать чрезмерной нагрузке в зоне соединения.
  9. После укладки кабель в лотке закрепляется нейлоновыми стяжками, он не должен сползать или провисать. Если особенности поверхности не позволяют использовать специальные кабельные крепления, допустимо применение хомутов, но с особой осторожностью, чтобы не повредить кабель. Рекомендуется применение хомутов с пластиковым защитным слоем, для каждого кабеля следует использовать отдельный хомут и ни в коем случае не стягивать вместе несколько кабелей. Между конечными точками крепления кабеля лучше оставить небольшую слабину, а не класть кабель в натяг, иначе он будет плохо реагировать на колебания температуры и вибрации.
  10. Если при монтаже оптоволокно все-таки было повреждено, пометьте участок и оставьте достаточный запас кабеля для последующего сращивания.

В принципе, прокладка оптоволоконного кабеля не сильно отличается от монтажа обычного кабеля. Если соблюдать все указанные нами рекомендации, то проблем при монтаже и эксплуатации не возникнет и Ваша система будет работать долго, качественно и надежно.

Пример типового решения по прокладке линии ВОЛС

Задача – организовать систему ВОЛС между двумя отдельно стоящими зданиями производственного корпуса и административного здания. Расстояние между зданиями 500 м.

Смета на монтаж системы ВОЛС
№п/п Наименование оборудования, материалов, работ Ед. из-я Кол-во Цена за ед. Сумма, в руб.
I. Оборудование системы ВОЛС, в том числе: 25 783
1.1. Кросс оптический настенный (ШКОН) 8 портов шт. 2 2600 5200
1.2. Медиаконвертер 10/100-Base-T / 100Base-FX, Tx/Rx: 1310/1550нм шт. 2 2655 5310
1.3. Муфта оптическая проходная шт. 3 3420 10260
1.4. Ящик коммутационный 600х400 шт. 2 2507 5013
II. Кабельные трассы и материалы системы ВОЛС, в том числе: 25 000
2.1. Оптический кабель с внешним тросом 6кН, центральный модуль, 4 волокна, одномодовый G.652. м. 200 41 8200
2.2. Оптический кабель с внутренним несущим тросом, центральный модуль, 4 волокна, одномодовый G.652. м. 300 36 10800
2.3. Прочие расходные материалы (разъемы, саморезы, дюбеля, изоляционная лента, крепления и т.п.) компл. 1 6000 6000
III. ИТОГО СТОИМОСТЬ ОБОРУДОВАНИЯ И МАТЕРИАЛОВ (п.I+п.II) 50 783
IV. Транспортно-заготовительные расходы, 10% *п.III 5078
V. Работы по монтажу и коммутации оборудования, в том числе: 111 160
5.1. Монтаж перетяжки ед. 4 8000 32000
5.2. Прокладка кабеля м. 500 75 37500
5.3. Монтаж и сварка разъемов ед. 32 880 28160
5.4. Монтаж коммутационного оборудования ед. 9 1500 13500
VI. ВСЕГО ПО СМЕТЕ (п.III+п.IV+п.V) 167 021

Пояснения и комментарии:

  1. Общая протяженность трассы 500 м., в том числе:
    • от забора до производственного корпуса и административного здания составляет по 100 м. (итого 200 м.);
    • вдоль забора между зданиями 300 м.
  2. Монтаж кабеля осуществляется открытым способом, в том числе:
    • от зданий до забора (200 м.) по воздуху (перетяжка) с применением специализированных для прокладки ВОЛС материалов;
    • между зданиями (300 м.) по забору из железобетонных плит, кабель закрепляется по середине полотна забора при помощи металлических клипс.
  3. Для организации ВОЛС используется специализированный самонесущий (встроенный трос) бронированный кабель.