Что изучает молекулярная биология кратко. Молекулярная биология как наука лекция к.б.н

Молекулярная биология пережила период бурного развития собственных методов исследования, которыми теперь отличается от биохимии. К ним, в частности, относятся методы генной инженерии , клонирования , искусственной экспрессии и нокаута генов . Поскольку ДНК является материальным носителем генетической информации, молекулярная биология значительно сблизилась с генетикой , и на стыке образовалась молекулярная генетика , являющаяся одновременно разделом генетики и молекулярной биологии. Так же, как молекулярная биология широко применяет вирусы как инструмент исследования, в вирусологии для решения своих задач используют методы молекулярной биологии. Для анализа генетической информации привлекается вычислительная техника, в связи с чем появились новые направления молекулярной генетики, которые иногда считают особыми дисциплинами: биоинформатика , геномика и протеомика .

История развития

Это основополагающее открытие было подготовлено длительным этапом исследований генетики и биохимии вирусов и бактерий .

В 1928 году Фредерик Гриффит впервые показал, что экстракт убитых нагреванием болезнетворных бактерий может передавать признак патогенности неопасным бактериям. Исследование трансформации бактерий в дальнейшем привело к очистке болезнетворного агента, которым, вопреки ожиданиям, оказался не белок , а нуклеиновая кислота . Сама по себе нуклеиновая кислота не опасна, она лишь переносит гены, определяющие патогенность и другие свойства микроорганизма.

В 50-х годах XX века было показано, что у бактерий существует примитивный половой процесс, они способны обмениваться внехромосомной ДНК, плазмидами . Открытие плазмид, как и трансформации , легло в основу распространённой в молекулярной биологии плазмидной технологии . Ещё одним важным для методологии открытием стало обнаружение в начале XX века вирусов бактерий, бактериофагов . Фаги тоже могут переносить генетический материал из одной бактериальной клетки в другую. Заражение бактерий фагами приводит к изменению состава бактериальной РНК . Если без фагов состав РНК сходен с составом ДНК бактерии, то после заражения РНК становится больше похожа на ДНК бактериофага. Тем самым было установлено, что структура РНК определяется структурой ДНК. В свою очередь, скорость синтеза белка в клетках зависит от количества РНК-белковых комплексов. Так была сформулирована центральная догма молекулярной биологии : ДНК ↔ РНК → белок.

Дальнейшее развитие молекулярной биологии сопровождалось как развитием её методологии, в частности, изобретением метода определения нуклеотидной последовательности ДНК (У. Гилберт и Ф. Сенгер , Нобелевская премия по химии 1980 года), так и новыми открытиями в области исследований строения и функционирования генов (см. История генетики). К началу XXI века были получены данные о первичной структуре всей ДНК человека и целого ряда других организмов, наиболее важных для медицины, сельского хозяйства и научных исследований, что привело к возникновению нескольких новых направлений в биологии: геномики, биоинформатики и др.

См. также

  • Молекулярная биология (журнал)
  • Транскриптомика
  • Молекулярная палеонтология
  • EMBO - Европейская организация молекулярных биологов

Литература

  • Сингер М., Берг П. Гены и геномы. - Москва, 1998.
  • Стент Г., Кэлиндар Р. Молекулярная генетика. - Москва, 1981.
  • Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning. - 1989.
  • Патрушев Л. И. Экспрессия генов. - М.: Наука, 2000. - 000 с., ил. ISBN 5-02-001890-2

Ссылки

  • Материалы по молекулярной биологии от Российской Академии Наук

Wikimedia Foundation . 2010 .

  • Ардатовский район Нижегородской области
  • Арзамасский район Нижегородской области

Смотреть что такое "Молекулярная биология" в других словарях:

    МОЛЕКУЛЯРНАЯ БИОЛОГИЯ - изучает осн. свойства и проявления жизни на молекулярном уровне. Важнейшими направлениями в М. б. являются исследования структурно функциональной организации генетического аппарата клеток и механизма реализации наследственной информации… … Биологический энциклопедический словарь

    МОЛЕКУЛЯРНАЯ БИОЛОГИЯ - исследует основные свойства и проявления жизни на молекулярном уровне. Выясняет, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации, превращение энергии в живых клетках и др. явления обусловлены … Большой Энциклопедический словарь

    МОЛЕКУЛЯРНАЯ БИОЛОГИЯ Современная энциклопедия

    МОЛЕКУЛЯРНАЯ БИОЛОГИЯ - МОЛЕКУЛЯРНАЯ БИОЛОГИЯ, биологическое изучение строения и функционирования МОЛЕКУЛ, из которых состоят живые организмы. К основным сферам изучения относятся физические и химические свойства белков и НУКЛЕИНОВЫХ КИСЛОТ, таких как ДНК. см. также… … Научно-технический энциклопедический словарь

    молекулярная биология - раздел биол., который исследует основные свойства и проявления жизни на молекулярном уровне. Выясняет, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации, превращение энергии в живых клетках и… … Словарь микробиологии

    молекулярная биология - — Тематики биотехнологии EN molecular biology … Справочник технического переводчика

    Молекулярная биология - МОЛЕКУЛЯРНАЯ БИОЛОГИЯ, исследует основные свойства и проявления жизни на молекулярном уровне. Выясняет, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации, превращение энергии в живых клетках и… … Иллюстрированный энциклопедический словарь

    Молекулярная биология - наука, ставящая своей задачей познание природы явлений жизнедеятельности путём изучения биологических объектов и систем на уровне, приближающемся к молекулярному, а в ряде случаев и достигающем этого предела. Конечной целью при этом… … Большая советская энциклопедия

    МОЛЕКУЛЯРНАЯ БИОЛОГИЯ - изучает явления жизни на уровне макромолекул (гл. обр. белков и нуклеиновых к т) в бесклеточных структурах (рибосомы и др.), в вирусах, а также в клетках. Цель М. б. установление роли и механизма функционирования этих макромолекул на основе… … Химическая энциклопедия

    молекулярная биология - исследует основные свойства и проявления жизни на молекулярном уровне. Выясняет, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации, превращение энергии в живых клетках и другие явления… … Энциклопедический словарь

Я кратко напомню так называемую центральную догму молекулярной биологии , в первоначальном виде сформулированную Фрэнсисом Криком . В общем случае она гласит, что генетическая информация при реализации передается от нуклеиновых кислот к белку, но не наоборот. А точнее, возможно передача ДНК → ДНК (репликация ), ДНК → РНК (транскрипция ) и РНК → белок (трансляция ). Так же существуют значительно реже реализуемые пути, свойственные некоторым вирусам: РНК → ДНК (обратная транскрипция ) и РНК → РНК (репликация РНК ). Также напомню, что белки состоят из аминокислотных остатков, последовательность которых закодирована в генетическом коде организма: три нуклеотида (их называют кодон , или триплет ) кодируют одну аминокислоту, причем одну и ту же аминокислоту может кодировать несколько кодонов.

Во второй половине XX века получили развитие технологии рекомбинантной ДНК (то есть, методы манипуляции ДНК, позволяющие различными способами изменять последовательность и состав нуклеотидов в молекуле). Именно на их основе происходит развитие всех молекулярно-биологических методов и поныне, хотя они стали значительно сложнее, как идейно, так и технологически. Именно молекулярная биология вызвала такой бурный рост количества биологической информации за последние полвека.

Я расскажу о методах манипуляции и изучения ДНК и РНК, совсем немного коснусь белков, поскольку в основном методы, связанные с ними, ближе к биохимии, чем к молекулярной биологии (хотя грань между ними в последнее время стала очень расплывчатой).

Разрезание и сшивание

Ферменты - белки, ускоряющие прохождение химических реакций. Они очень эффективны: ускорение может составлять несколько порядков! Например, фермент каталаза , расщепляющий перекись водорода, ускоряет реакцию примерно на 12 порядков, то есть в триллион раз! В то же время неорганический катализатор - мелкодисперсная платина - ускоряет эту же реакцию только на шесть порядков, или в миллион раз. Однако за это приходится платить очень строгими условиями работы большинства из них.

Рестрикционные эндонуклеазы

Рисунок 2. Сайты рестрикции. Сверху Sma I, при работе которой образуются «тупые» концы. Снизу - целевая последовательность рестриктазы Eco RI , при работе которой образуются «липкие» концы.

Одним из первых и важнейших из шагов молекулярной биологии стала возможность разрезать молекулы ДНК, причем в строго определенных местах . Этот метод был изобретен при изучении в 1950-1970-е годы такого феномена: некоторые виды бактерий при добавлении в среду чужеродной ДНК разрушали ее, в то время, как их собственная ДНК оставалась невредимой. Оказалось, что они для этого используют ферменты, позднее названные рестрикционными нуклеазами или рестриктазами . Существует множество видов рестриктаз: к 2007-му году их было известно более 3000 . Важным свойством каждого подобного фермента является его способность разрезать строго определенную - целевую - последовательность нуклеотидов ДНК (рис. 2). Рестриктазы не воздействуют на собственную ДНК клетки, поскольку нуклеотиды в целевых последовательностях модифицированы так, что рестриктаза не может с ними работать. (Правда, иногда, наоборот, они могут разрезать только модифицированные последовательности - для борьбы с теми, кто модифицирует ДНК, защищаясь от вышеописанных рестриктаз.) Из-за того, что целевые последовательности бывают различной длины, частота встречаемости их в молекулах ДНК варьирует: чем длиннее необходимый фрагмент, тем меньше вероятность его появления. Соответственно, образующиеся при обработке различными рестриктазами фрагменты ДНК будут иметь различную длину.

Новые эндонуклеазы продолжают открывать и по сей день. Многие из них до сих пор не клонированы, то есть, не известны гены, которые их кодируют, и в качестве «фермента» используют некую очищенную фракцию белков, обладающую нужной каталитической активностью. Новосибирская компания СибЭнзим долгое время успешно соревновалась с компанией New England Biolabs - признанным во всем мире лидером по поставке рестритаз (то есть предлагала такое же или большее различных рестриктаз, некоторые из которых весьма экзотичны). - Ред.

За выделение первой рестриктазы, изучение ее свойств и первое применение для картирования хромосом Вернер Арбер (Werner Arber ), Дэн Натанс (Dan Nathans ) и Гамильтон Смит (Hamilton Smith ) в 1978 году получили Нобелевскую премию по физиологии и медицине .

ДНК-лигазы

Для создания новых молекул ДНК, разумеется, кроме разрезания, необходима еще и возможность сшивания двух цепей. Это делают с помощью ферментов, называемых ДНК-лигазами , которые сшивают сахаро-фосфатный остов двух цепей ДНК. Поскольку по химическому строению ДНК не отличается у разных организмов, можно сшивать ДНК из любых источников, и клетка не сможет отличить полученную молекулу от своей собственной ДНК.

Разделение молекул ДНК: электрофорез в геле

Часто приходится иметь дело со смесью молекул ДНК разной длины. Например, при обработке химически выделенной из организма ДНК рестриктазами как раз получится смесь фрагментов ДНК, причем их длины будут различаться.

Поскольку любая молекула ДНК в водном растворе отрицательно заряжена, появляется возможность разделить смесь фрагментов ДНК различных размеров по их длине с помощью электрофореза , . ДНК помещают в гель (обычно, агарозный для относительно длинных и сильно отличающихся молекул или полиакриламидный для электрофореза с высоким разрешением), который помещают в постоянное электрическое поле. Из-за этого молекулы ДНК будут двигаться к положительному электроду (аноду ), причем их скорости будут зависеть от длины молекулы: чем она длиннее, тем сильнее ей мешает двигаться гель и, соответственно, тем ниже скорость. После электрофореза смеси фрагментов разных длин в геле образуют полосы, соответствующие фрагментам одной и той же длины. С помощью маркеров (смесей фрагментов ДНК известных длин) можно установить длину молекул в образце (рис. 3).

Визуализовать результаты фореза можно двумя способами. Первый, наиболее часто используемый в последнее время - добавление в гель веществ, флуоресцирующих в присутствии ДНК (традиционно использовался довольно токсичный бромистый этидий; в последнее время в обиход входят более безопасные вещества). Бромистый этидий светится оранжевым светом при облучении ультрафиолетом, причем при связывании с ДНК интенсивность свечения возрастает на несколько порядков (рис. 4). Другой метод заключается в использовании радиоактивных изотопов, которые необходимо предварительно включить в состав анализируемой ДНК. В этом случае на гель сверху кладут фотопластинку, которая засвечивается над полосами ДНК за счет радиоактивного излучения (этот метод визуализации называют авторадиографией ).

Рисунок 4. Электрофорез в агарозном геле с использованием бромистого этидия для визуализации результатов в ультрафиолете (слева ). Вторая слева дорожка - маркер с известными длинами фрагментов. Справа - Установка для проведения электрофореза в геле.

Кроме «обычного» электрофореза в пластине из геля, в некоторых случаях используют капиллярный электрофорез , который проводят в очень тонкой трубочке, наполненной гелем (обычно полиакриламидным). Разрешающая способность такого электрофореза значительно выше: с его помощью можно разделять молекулы ДНК, отличающиеся по длине всего на один нуклеотид . Об одном из важных приложений такого метода читайте ниже в описании метода секвенирования ДНК по Сэнгеру.

Выявление определенной последовательности ДНК в смеси. Саузерн блоттинг

С помощью электрофореза можно узнать размер молекул ДНК в растворе, однако он ничего не скажет о последовательности нуклеотидов в них. С помощью гибридизации ДНК можно понять, какая из полос содержит фрагмент со строго определенной последовательностью. Гибридизация ДНК основана на образовании водородных связей между двумя цепями ДНК, приводящем к их соединению , .

Сначала необходимо синтезировать ДНК-зонд , комплементарный той последовательности, которую мы ищем. Он обычно представляет собой одноцепочечную молекулу ДНК длиной 10–1000 нуклеотидов. Из-за комплементарности зонд свяжется с необходимой последовательностью, а за счет флуоресцентной метки или радиоизотопов, встроенных в зонд, результаты можно увидеть.

Для этого используют процедуру, называемую Саузерн-блоттинг или перенос по Саузерну , названную по имени ученого, ее изобретшего (Edwin Southern ). Первоначально смесь фрагментов ДНК разделяют с помощью электрофореза. На гель сверху кладут лист нитроцеллюлозы или нейлона, и разделенные фрагменты ДНК переносятся на него за счет блоттинга: гель лежит на губке в ванночке с раствором щелочи, который просачивается через гель и нитроцеллюлозу за счет капиллярного эффекта от бумажных полотенец, сложенных сверху. Во время просачивания щелочь вызывает денатурацию ДНК, и на поверхность пластины нитроцеллюлозы переносятся и закрепляются там уже одноцепочечные фрагменты. Лист нитроцеллюлозы аккуратно снимают с геля и обрабатывают радиоактивно меченной ДНК-пробой, специфичной к необходимой последовательности ДНК. Лист нитроцеллюлозы тщательно отмывают, чтобы на нем остались только те молекулы пробы, которые гибридизовались с ДНК на нитроцеллюлозе. После авторадиографии ДНК, с которой гибридизовался зонд, будет видна как полосы на фотопластинке (рис. 5).

Адаптация этой методики для определения специфических последовательностей РНК называется, в противоположность Саузерн-блоттингу, норзерн-блоттингом (northern blotting : southern по-английски означает «южный», а northern - «северный»). В этом случае проводят электрофорез в геле с молекулами мРНК, а в качестве зонда выбирают одноцепочечную молекулу ДНК или РНК.

Клонирование ДНК

Мы уже знаем, каким образом можно разрезать геном на части (а их сшивать с произвольными молекулами ДНК), разделять полученные фрагменты по длине и с помощью гибридизации выбрать необходимый. Теперь настало время узнать, как, скомбинировав эти методы, мы можем клонировать участок генома (например, определенный ген). В геноме любой ген занимает крайне маленькую длину (по сравнению со всей ДНК клетки). Клонирование ДНК буквально означает создание большого числа копий определенного ее фрагмента. Именно за счет этой амплификации мы получаем возможность выделить участок ДНК и получить его в достаточном для изучения количестве.

Каким образом разделить фрагменты ДНК по длине и идентифицировать нужный - было рассказано выше. Теперь надо понять, каким образом можно копировать необходимый нам фрагмент. Существует два основных метода: использование быстро делящихся организмов (обычно бактерий Escherichia coli - кишечной палочки - или дрожжей Saccharomyces serevisiae ) или проделать аналогичный процесс, но in vitro с помощью полимеразной цепной реакции .

Репликация в бактериях

Поскольку при каждом клеточном делении бактерии (как и любые другие клетки, не считая предшественников половых клеток) удваивают свою ДНК, это можно использовать для умножения количества необходимой нам ДНК . Для того, чтобы внедрить наш фрагмент ДНК в бактерию, необходимо «вшить» его в специальный вектор, в качестве которого обычно используют бактериальную плазмиду (небольшую - относительно бактериальной хромосомы - кольцевую молекулу ДНК, реплицирующуюся отдельно от хромосомы). У бактерий «дикого типа» часто встречаются подобные структуры: они часто переносятся «горизонтально » между разными штаммами или даже видами бактерий. Чаще всего в них содержатся гены устойчивости к антибиотикам (именно из-за этого свойства их и открыли) или бактериофагам, а также гены, позволяющие клетке использовать более разнообразный субстрат. (Иногда же они «эгоистичны» и не несут никаких функций.) Именно такие плазмиды обычно и используют в молекулярно-генетических исследованиях. В плазмидах обязательно содержится точка начала репликации (последовательность, с которой начинается репликация молекулы), целевая последовательность рестриктазы и ген, позволяющий отобрать те клетки, которые обладают этой плазмидой (обычно, это гены устойчивости к какому-нибудь антибиотику). В некоторых случаях (например, при изучении очень больших фрагментов ДНК) используют не плазмиду, а искусственную бактериальную хромосому .

В плазмиду с помощью рестриктаз и лигаз встраивают необходимый фрагмент ДНК, после чего добавляют ее в культуру бактерий при специальных условиях, обеспечивающих трансформацию - процесс активного захвата бактерией ДНК из внешней среды (рис. 6). После этого проводят отбор бактерий, трансформация которых прошла успешно, добавляя соответствующий гену в плазмиде антибиотик: в живых остаются только клетки, несущие ген устойчивости (а, следовательно, и плазмиду). Далее, после роста культуры клеток, из нее выделяют плазмиды, а из них с помощью рестриктаз выделяют «наш» фрагмент ДНК (или использую плазмиду целиком). Если же ген вставили в плазмиду для того, чтобы получить его белковый продукт, необходимо обеспечить культуре условия для роста, а потом просто выделить требуемый белок.

На этом месте сразу же должен возникать вопрос: как же все это возможно было использовать до того, когда были расшифрованы геномы, да и чтение последовательности ДНК было еще дорогим и малораспространенным? Положим, с помощью рестрикции и клонирования полученных фрагментов мы получим библиотеку ДНК , то есть набор бактерий, несущих различные плазмиды, содержащие суммарно весь геном (или заметную его часть). Но каким образом мы сможем понять, в каком из фрагментов содержится необходимый ген? Для этого использовали метод гибридизации. Сначала необходимо было выделить белок нужного гена. После чего отсеквенировать его фрагмент, обратить генетический код и получить последовательность нуклеотидов (конечно, из-за вырожденности генетического кода приходилось пробовать много различных вариантов). В соответствии с ней химически синтезировали короткую молекулу ДНК, которую и использовали в качестве зонда для гибридизации.

Но в некоторых случаях этот метод давал сбои - например, так произошло с фактором свертывания крови VIII. Этот белок участвует в свертывании крови , и нарушения в его функциональности являются причиной одного из самых распространенных генетических заболеваний - гемофилии А. Раньше для лечения приходилось выделять этот белок из большого числа организмов, потому что не удавалось клонировать его для производства бактериями. Связано это было с тем, что его длина составляет около 180000 пар нуклеотидов, и он содержит много интронов (некодирующих фрагментов между кодирующими) - неудивительно, что ни в одну плазмиду этот ген не попал целиком.

О механизмах свертывания крови см. «Как работает свертывание крови? ». - Ред.

Полимеразная цепная реакция (ПЦР)

Метод основан на многократном избирательном копировании определенного участка ДНК при помощи ферментов в искусственных условиях. При этом происходит копирование только того участка ДНК, который удовлетворяет заданным условиям, и только в том случае, если он присутствует в исследуемом образце. В отличие от репликации ДНК в клетках живых организмов, с помощью ПЦР амплифицируют сравнительно короткие участки ДНК (обычно, не более 3000 пар нуклеотидов, однако есть методы позволяющие «поднимать» до 20 тысяч пар нуклеотидов - так называемый Long Range PCR).

Фактически, ПЦР является искусственной многократной репликацией фрагмента ДНК (рис. 7). ДНК-полимеразы так устроены, что не могут синтезировать новую ДНК, просто имея в наличии матрицу и мономеры. Для этого необходима еще и затравка (праймер) , с которого они начинают синтез. Праймер - это короткий одноцепочечный фрагмент нуклеиновой кислоты, комплементарный ДНК-матрице. При репликации в клетке такие праймеры синтезируются специальным ферментом праймазой и являются молекулами РНК, которые позже заменяются на ДНК. Однако в ПЦР используют искусственно синтезированные молекулы ДНК, поскольку в этом случае не нужна стадия удаления РНК и синтеза на их месте ДНК. В ПЦР праймеры ограничивают амплифицируемый участок с обеих сторон.

Рисунок 7. Репликация ДНК - важнейший для живых организмов процесс, основа множества молекулярно-биологических методов. Поскольку каждая из цепей ДНК содержит последовательность нуклеотидов, комплементарную другой цепи (их информационное содержание одинаково), при удвоении ДНК цепи расходятся, а затем каждая цепь служит матрицей, на которой выстраивается комплементарная ей новая цепь ДНК. В результате образуются два дуплекса ДНК, каждый из которых является точной (без учета ошибок синтеза) копией первоначальной молекулы.

Итак, пора объяснить, как же ПЦР работает. Изначально в реакционной смеси находятся: ДНК-матрица, праймеры, ДНК-полимераза, свободные нуклеозиды (будущие «буквы» в новосинтезированной ДНК), а также некоторые другие вещества, улучшающие работу полимеразы (их добавляют в специальные буферы, используемые в реакции).

Чтобы синтезировать ДНК, комплементарную матрице, необходимо, чтобы один из праймеров образовал с ней водородные связи (как говорят, «отжегся» на ней). Но ведь матрица уже образует их со второй цепью! Значит, сначала необходимо расплавить ДНК, - то есть разрушить водородные связи. Делают это с помощью простого нагревания (до ≈95 °С) - стадия, называемая денатурацией . Но теперь и праймеры из-за высокой температуры не могут отжечься на матрице! Тогда температуру понижают (50–65 °С), праймеры отжигаются, после чего температуру немного поднимают (до оптимума работы полимеразы, обычно, около 72 °С). И тогда полимераза начинает синтезировать комплементарные матрице цепи ДНК - это называют элонгацией (рис. 8). После одного такого цикла количество копий необходимых фрагментов удвоилось. Однако ничто не мешает повторить это еще раз. И не один, а несколько десятков раз! И с каждым повтором количество копий нашего фрагмента ДНК будет удваиваться, ведь новосинтезированные молекулы тоже будут служить матрицами (рис. 9)! (На самом деле эффективность ПЦР редко настолько высока, что количество копий именно удваивается , но в идеале это так, да и реальные числа часто бывают близки к этому.)

Рисунок 9. С каждым циклом ПЦР количество целевой ДНК удваивается.

Увидеть результаты ПЦР очень просто: достаточно провести электрофорез реакционной смеси после ПЦР, и будет видна яркая полоса с полученными копиями.

Раньше полимеразу, инактивирующуюся при нагревании с каждым циклом, приходилось все время добавлять, но вскоре было предложено использовать термостабильную полимеразу из термофильных бактерий, которая выдерживает такой нагрев, что сильно упростило проведение ПЦР (чаще всего используют Taq-полимеразу из бактерии Thermus aquaticus ).

Чтобы избежать сильного испарения воды из реакционной смеси, в нее добавляют масло, покрывающее ее сверху, и/или используют нагревающуюся крышку термоциклера - прибора, в котором проводят ПЦР. Он быстро меняет температуру пробирок, и их не приходится постоянно перекладывать из одного термостата в другой. Для предотвращения неспецифического синтеза еще до нагрева и собственно начала циклов, часто использую ПЦР с «горячим стартом»: вся ДНК и полимераза разделяются между собой парафиновой прослойкой, которая плавится при высокой температуре и дает им взаимодействовать уже в правильных условиях. Иногда же используют модифицированные полимеразы, которые не работают при низкой температуре.

Можно еще много говорить о различных тонкостях ПЦР, но важнее всего сказать об альтернативных классическому форезу методах определения результатов. Например, довольно очевидным вариантом является добавление в реакционную пробирку перед началом реакции веществ, флуоресцирующих в присутствии ДНК. Тогда, сравнив изначальную флуоресценцию с конечной, можно увидеть, синтезировалось ли значительное количество ДНК или нет. Но этот способ не специфичен: мы никак не сможем определить, синтезировался ли необходимый фрагмент, или это какие-то праймеры слиплись и достроились до непредсказуемых последовательностей.

Наиболее интересным вариантом является ПЦР «в реальном времени» («real-time PCR») . Существует несколько реализаций этого метода, но идея везде одна и та же: можно прямо в ходе реакции наблюдать за накоплением продуктов ПЦР (по флуоресценции). Соответственно, для проведения ПЦР «в реальном времени» нужен специальный прибор, способный возбуждать и считывать флуоресценцию в каждой пробирке. Самое простое решение - добавить в пробирку те же самые вещества, которые флуоресцируют в присутствии ДНК, однако минусы такого метода уже были описаны выше.

Строго это называется «ПЦР с регистрацией флуоресценции в режиме реального времени» или «количественная ПЦР». - Ред.

Рисунок 11. Пример кривых накопления флуоресценции в ПЦР «в реальном времени»: зависимость интенсивности флуоресценции (в нескольких пробирках - на каждую своя кривая) от номера цикла.

Самой популярной реализацией такого подхода является метод выщепления флуорофора за счет разрушения зонда (TaqMan Assay; рис. 10). В этом случае в реакционной смеси должен присутствовать еще один компонент - специальный одноцепочечный ДНК-зонд: молекула ДНК, комплементарная последовательности амплифицируемого фрагмента, расположенной между праймерами. При этом к одному его концу должен быть химически приделан флуорофор (флуоресцирующая молекула), а к другому - гаситель (молекула, поглощающая энергию флуорофора и «гасящая» флуоресценцию). Когда такой зонд находится в растворе или комплементарно связан с целевой последовательностью, флуорофор и гаситель находятся относительно недалеко друг от друга, и флуоресценции не наблюдается. Однако за счет 3´-экзонуклеазной активности, которой обладает Taq-полимераза (то есть она расщепляет ДНК, на которую «натыкается» в ходе синтеза, и на ее месте синтезирует новую), зонд при синтезе второй цепи разрушается, флуорофор и гаситель за счет диффузии удаляются друг от друга, и появляется флуоресценция.

Поскольку число копий в ходе ПЦР растет экспоненциально, так же растет и флуоресценция. Однако это продолжается недолго, поскольку в какой-то момент эффективность реакции начинает падать из-за постепенной инактивации полимеразы, нехватки каких-то компонентов и т. п. (рис. 11). Анализируя графики роста флуоресценции, можно много понять о протекании ПЦР, но, самое важное, можно узнать, сколько ДНК-матриц было изначально: это так называемая количественная ПЦР (quantitative PCR, qPCR).

Все варианты применения ПЦР в науке невозможно перечислить. Выделение фрагмента ДНК, секвенирование, мутагенез... ПЦР - один из самых востребованных для ненаучных целей метод (видео 1). Он широко применяется в медицине для ранней диагностики наследственных и инфекционных заболеваний, определения отцовства, в расследованиях для установления личности и для многого другого.

Естественные клеточные процессы in vitro

Все основные молекулярно-биологические процессы могут быть легко проведены in vitro (то есть, в пробирке). Пример приведен выше: ПЦР - это аналог репликации ДНК. Для этого достаточно просто смешать необходимые реагенты в подходящих условиях: для транскрипции нужны ДНК-матрица, РНК-полимераза и рибонуклеотиды, для трансляции - мРНК, субъединицы рибосом и аминокислоты, для обратной транскрипции - РНК-матрица, обратная транскриптаза (она же ревертаза) и дезоксирибонуклеотиды. Эти методы широко применяются в различных областях биологии, когда необходимо, например, получить чистую РНК определенного гена. В этом случае нужно сначала провести обратную транскрипцию его (гена) мРНК, с помощью ПЦР амплифицировать ее, а затем с помощью in vitro- транскрипции получить много мРНК. Первая стадия необходима из-за того, что перед образованием зрелой мРНК в клетке проходит сплайсинг и процессинг РНК (у эукариот; у бактерий в этом смысле все проще) - подготовка к работе матрицей для синтеза белка. Иногда этого удается избежать, если вся кодирующая последовательность гена расположена в одном экзоне.

Секвенирование ДНК

Можно сказать, важнейшие методы манипуляции с ДНК уже описаны. Следующий этап - определение собственно нуклеотидной последовательности цепи в молекуле - секвенирование . Определение нуклеотидной последовательности ДНК крайне важно для множества фундаментальных и прикладных задач. Особое место оно занимает в науке: для анализа результатов секвенирования геномов была, фактически, создана новая наука - биоинформатика . Секвенированием сейчас пользуются молекулярные биологи, генетики, биохимики, микробиологи, ботаники и зоологи, и, конечно же, эволюционисты: практически вся современная систематика основана на его результатах. Секвенирование широко применяется в медицине как метод поиска наследственных заболеваний и изучения инфекций. (См., например, «Уточнение „родословной“ членистоногих » и « Ск верный анекдот: негр, китаец и Крейг Вентер... ». - Ред. )

На самом деле хронологически методы изобретались совсем в другом порядке. Например, секвенирование по Сэнгеру было разработано в 1977 году, а ПЦР, как говорилось выше, только в 1983-м.

Существует множество различных методик секвенирования, но все методы можно разделить на две категории: «классические» и нового поколения. Сейчас используется фактически только один «классический» метод - секвенирование по Сэнгеру , или метод терминаторов. По сравнению с новыми методами, у него есть важное преимущество: длина прочтения, то есть количество нуклеотидов в последовательности, которое можно получить за один раз, у него выше - до 1000 нуклеотидов . В то же время у самого «хорошего» в этом плане «нового» метода секвенирования - 454-, или пиросеквенирования - этот параметр не превышает 500 нуклеотидов . Именно длина прочтения ограничивает возможности новых методов: оказывается крайне сложно «собрать» целый геном из фрагментов размером в несколько десятков нуклеотидов. Как минимум, для этого требуются суперкомпьютеры, а некоторые места в геноме разрешить оказывается просто невозможно, если они содержат высокоповторяющиеся последовательности. В таком случае может помочь сравнение полученных фрагментов с уже имеющимся целым геномом, но таким образом невозможно прочесть геном организма впервые (de novo ). (См. также: «Код жизни: прочесть не значит понять ». - Ред. )

Английский биохимик и корифей молекулярной биологии, дважды лауреат Нобелевской премии по химии: за определение аминокислотной последовательности инсулина (1955 г.) и за разработку метода секвенирования ДНК (1980 г.). - Ред.

Есть метод нового поколения, позволяющий читать несколько тысяч пн, но с большими ошибками (Pacific Biosciences). 454/Roche сегодня могут читать и больше 500 пн; то же самое уже может и молодое «полупроводниковое секвенирование». - Ред.

Оба упомянутых выше метода секвенирования уже достаточно подробно описаны на «биомолекуле» : очень советую ознакомиться. Я же для примера расскажу про другой распространенный быстрый и дешевый метод (в расчете на один прочитанный нуклеотид) - метод, реализованный в секвенаторах Illumina (видео 2). Основной его недостаток - чтение фрагментов очень короткой длины, не больше 100 нуклеотидов, и вытекающая отсюда сложность прочтения геном «с нуля» .

В этом методе можно выделить три стадии: подготовку библиотеки фрагментов (1), создание кластеров (2) и собственно секвенирование (3).

Видео 2. В интернете есть несколько хороших видео, на которых описан процесс секвенирования Illumina , например на официальном сайте компании (вкладка Technology). Правда, они все на английском языке.

Было уже довольно много сказано про методы работы с нуклеиновыми кислотами и их изучения. Пришло время узнать, каким образом можно выяснить, как же клетка работает - в частности, попытаться определить функцию гена и белка, который он кодирует.

In vitro -мутагенез

Для изучения функции белка очень важно научиться вносить в него мутации . Например, имея организм с неработающим ферментом, можно по биохимическим отличиям понять, что делает нормальный белок. Существуют разные способы создать полностью неработающий ген (как произвольный из всего генома, так и совершенно конкретный - тогда это называется нокаутом этого гена). Один из таких способов - вставка какого-то фрагмента ДНК в геном: если эта вставка придется на ген, то он (точнее, скорее всего, белок, который он кодирует) перестанет нормально функционировать.

Однако существуют способы очень точного изменения последовательности гена и, соответственно, белка. Про один из таких методов - сайт-специфичный мутагенез - я и расскажу. Суть его заключается в изменении конкретного (обычно одного) нуклеотида в последовательности. Для его использования сначала необходимо клонировать этот ген в плазмиде. После этого нужно провести как бы ПЦР с одним праймером. Причем этот праймер должен как раз включать в себя последовательность, которую мы хотим изменить - уже в нужном нам виде. Например, на рис. 14 вместо буквы А, которая должна была бы стоять напротив Т в родительской цепи, в праймере стоит Ц. После синтеза второй цепи ДНК плазмиды, содержащей праймер, в нее будет внесена мутация - А заменится на Ц. Такие плазмиды вводятся в клетки, в которых при делении две цепи окажутся в разных дочерних клетках. Таким образом, в половине клеток-потомков будет изначальный вариант плазмиды, а в половине - мутантный. Тогда, соответственно, половина клеток будет производить нормальный белок, кодируемый этим геном, а половина - мутантный. В случае, изображенном на рис. 14, в нем вместо одной аминокислоты (аспарагина) будет стоять другая (аланин). По аналогии можно вносить случайные мутации с помощью специальной ДНК-полимеразы, вносящей повышенное число ошибок.

Рисунок 14. Схема проведения сайт-специфичного мутагенеза. C. elegans , - то есть, об отключении гена во всех (почти) клетках этого червя.

Такой поразительный эффект достигается с помощью введения в клетку двуцепочечных молекул РНК (дцРНК), одна из цепей в каждой из которых комплементарна участку мРНК «выключаемого» гена. Это открывает поразительные возможности для изучения функций генов. Раньше для отключения генов приходилось создавать «нокаутных» животных (что ученые все равно вынуждены делать, например, с мышами - см. «Нобелевскую премию по физиологии и медицине вручили за технологию нокаутирования мышей ». - Ред. ), у которых изучаемый ген в принципе отсутствует в геноме. Однако создание нокаутов достаточно сложно, а обратно включить ген у таких организмов уже невозможно. С помощью РНК-интерференции отключить ген очень легко, - так же, как и включить, перестав водить в организм соответствующие дцРНК .

Существует три основных способа введения дцРНК в организм. Самый очевидный - впрыскивание в животное их раствора. Пользуются также «вымачиванием» нематод в растворе РНК. Однако оказалось, что можно делать все гораздо проще: скармливать нематодам эти молекулы! Причем особенно удобно то, что это так же замечательно работает, если нематод кормить бактериями (E. coli ), синтезирующими эти дцРНК (рис. 15) .

Рисунок 15. Системная РНК-интерференция. Червь C. elegans экспрессирует зеленый флуоресцентный (светящийся) белок в клетках глотки (ph) и мышцах стенки тела (bm). Слева - изначальный внешний вид. Справа - при РНК-интерференции с помощью «подкормки» бактериями ген инактивируется.

В принципе то, что молекулы РНК из кишечника распространяются практически по всем тканям, довольно удивительно. Известно, что за попадание молекул РНК в клетки кишечника отвечает белковый канал sid-1 , . Однако каким образом РНК распространяются по организму червя, достоверно не известно, - скорее всего, с участием белка rsd-8 Интересно, что все известные белки, принимающие участие в системной РНК-интерференции у C. elegans , имеются и у человека, однако такую эффективную систему искусственного подавления активности генов на системном уровне у человека наблюдать не удается. Если бы была возможность использовать системную РНК-интерференцию у человека, это могло бы стать методом борьбы с огромным набором заболеваний, от простуды до рака .

К слову, использование РНК-интерференции именно на культуре клеток человека позволило выявить, что многие гены человека способствуют развитию вируса гриппа: «Молекулярное двурушничество: гены человека работают на вирус гриппа ». - Ред.

Изучение экспрессии генов: ДНК-микрочипы

При изучении функции гена очень важно узнать, когда и в каких тканях организма он работает (экспрессируется), а также вместе с какими другими генами. Если требуется узнать это про небольшое число генов и тканей, то можно это сделать очень просто: выделить РНК из ткани, провести обратную транскрипцию (то есть, синтезировать кДНК - комплементарную ДНК ) и затем, провести количественную ПЦР. В зависимости от того, прошла ли ПЦР, мы узнаем, имеется ли мРНК исследуемого гена в ткани.

Однако если необходимо проделать то же самое для множества тканей и многих генов, то эта методика становится очень долгой и затратной. В таком случае используют ДНК-микрочипы . Это небольшие пластинки, на которые нанесены и прикреплены молекулы ДНК, комплементарные РНК изучаемых генов, причем заранее известно, где на них (пластинках) какая молекула расположена. Одним из способов создания чипа является синтез молекул ДНК прямо на нем с помощью робота.

Чтобы изучать экспрессию генов с помощью чипов, необходимо также синтезировать их кДНК и пометить ее флуоресцентным красителем (не разделяя кДНК разных генов). Такую смесь наносят на микрочип, добиваясь, чтобы кДНК гибридизовалась с молекулами ДНК на чипе. После этого смотрят, где наблюдается флуоресценция и сравнивают это с расположением молекул ДНК на чипе. Если место флуоресценции совпадает с положением молекулы ДНК, то в данной ткани этот ген экспрессирован. Кроме того, пометив кДНК из разных тканей разными красителями, можно изучать экспрессию сразу нескольких (обычно все-таки не больше 2) тканей на одном чипе: по цвету флуоресценции можно определить, в какой из тканей он экспрессирован (если сразу в нескольких - получится смешанный цвет) (рис. 16).

Однако в последнее время все чаще вместо чипов используют массовое секвенирование всей кДНК из ткани (создание так называемых транскриптомов ), что сильно упростилось из-за развития методов секвенирования. Это оказывается дешевле и эффективнее, поскольку знание полных последовательностей всех мРНК дает больше информации, чем просто сам факт их наличия или отсутствия.

Мы рассмотрели основные методы молекулярной биологии. Надеюсь, что вам стало немного понятнее, каким образом делаются молекулярно-биологические исследования, за что дают Нобелевские премии, и как они могут помочь в некоторых прикладных задачах. Но, более всего, я надеюсь, что вы тоже увидели красоту идей, лежащих в их основе, и, возможно, вам захотелось узнать о каких-то из этих методик подробнее.

Литература

  1. Нобелевские лауреаты: Дж. Уотсон , Ф. Крик , М. Уилкинс ;Википедия: 454-секвенирование (высокопроизводительное пиросеквенирование ДНК) . Cold Spring Harbor Symposia on Quantitative Biology . 71 , 95-100.

Молекулярная биология

наука, ставящая своей задачей познание природы явлений жизнедеятельности путём изучения биологических объектов и систем на уровне, приближающемся к молекулярному, а в ряде случаев и достигающем этого предела. Конечной целью при этом является выяснение того, каким образом и в какой мере характерные проявления жизни, такие, как наследственность, воспроизведение себе подобного, биосинтез белков, возбудимость, рост и развитие, хранение и передача информации, превращения энергии, подвижность и т. д., обусловлены структурой, свойствами и взаимодействием молекул биологически важных веществ, в первую очередь двух главных классов высокомолекулярных биополимеров (См. Биополимеры) - белков и нуклеиновых кислот. Отличительная черта М. б. - изучение явлений жизни на неживых объектах или таких, которым присущи самые примитивные проявления жизни. Таковыми являются биологические образования от клеточного уровня и ниже: субклеточные органеллы, такие, как изолированные клеточные ядра, митохондрии, рибосомы, хромосомы, клеточные мембраны; далее - системы, стоящие на границе живой и неживой природы, - вирусы, в том числе и бактериофаги, и кончая молекулами важнейших компонентов живой материи - нуклеиновых кислот (См. Нуклеиновые кислоты) и белков (См. Белки).

М. б. - новая область естествознания, тесно связанная с давно сложившимися направлениями исследований, которые охватываются биохимией (См. Биохимия), биофизикой (См. Биофизика) и биоорганической химией (См. Биоорганическая химия). Разграничение здесь возможно лишь на основе учёта применяемых методов и по принципиальному характеру используемых подходов.

Фундамент, на котором развивалась М. б., закладывался такими науками, как генетика, биохимия, физиология элементарных процессов и т. д. По истокам своего развития М. б. неразрывно связана с молекулярной генетикой (См. Молекулярная генетика), которая продолжает составлять важную часть М. б., хотя и сформировалась уже в значительной мере в самостоятельную дисциплину. Вычленение М. б. из биохимии продиктовано следующими соображениями. Задачи биохимии в основном ограничиваются констатацией участия тех или иных химических веществ при определённых биологических функциях и процессах и выяснением характера их превращений; ведущее значение принадлежит сведениям о реакционной способности и об основных чертах химического строения, выражаемого обычной химической формулой. Т. о., по существу, внимание сосредоточено на превращениях, затрагивающих главновалентные химические связи. Между тем, как было подчёркнуто Л. Полинг ом, в биологических системах и проявлениях жизнедеятельности основное значение должно быть отведено не главновалентным связям, действующим в пределах одной молекулы, а разнообразным типам связей, обусловливающих межмолекулярные взаимодействия (электростатическим, ван-дер-ваальсовым, водородным связям и др.).

Конечный результат биохимического исследования может быть представлен в виде той или иной системы химических уравнений, обычно полностью исчерпываемой их изображением на плоскости, т. е. в двух измерениях. Отличительной чертой М. б. является её трехмерность. Сущность М. б. усматривается М. Перуц ем в том, чтобы истолковать биологические функции в понятиях молекулярной структуры. Можно сказать, что если прежде при изучении биологических объектов необходимо было ответить на вопрос «что», т. е. какие вещества присутствуют, и на вопрос «где» - в каких тканях и органах, то М. б. ставит своей задачей получить ответы на вопрос «как», познав сущность роли и участия всей структуры молекулы, и на вопросы «почему» и «зачем», выяснив, с одной стороны, связи между свойствами молекулы (опять-таки в первую очередь белков и нуклеиновых кислот) и осуществляемыми ею функциями и, с другой стороны, роль таких отдельных функций в общем комплексе проявлений жизнедеятельности.

Решающую роль приобретают взаимное расположение атомов и их группировок в общей структуре макромолекулы, их пространственные взаимоотношения. Это касается как отдельных, индивидуальных, компонентов, так и общей конфигурации молекулы в целом. Именно в результате возникновения строго детерминированной объёмной структуры молекулы биополимеров приобретают те свойства, в силу которых они оказываются способными служить материальной основой биологических функций. Такой принцип подхода к изучению живого составляет наиболее характерную, типическую черту М. б.

Историческая справка. Огромное значение исследований биологических проблем на молекулярном уровне предвидел И. П. Павлов , говоривший о последней ступени в науке о жизни - физиологии живой молекулы. Самый термин «М. б.» был впервые употреблен англ. учёным У. Астбери в приложении к исследованиям, касавшимся выяснения зависимостей между молекулярной структурой и физическими и биологическими свойствами фибриллярных (волокнистых) белков, таких, как коллаген, фибрин крови или сократительные белки мышц. Широко применять термин «М. б.» стали с начала 50-х гг. 20 в.

Возникновение М. б. как сформировавшейся науки принято относить к 1953, когда Дж. Уотсон ом и Ф. Крик ом в Кембридже (Великобритания) была раскрыта трёхмерная структура дезоксирибонуклеиновой кислоты (См. Дезоксирибонуклеиновая кислота) (ДНК). Это позволило говорить о том, каким образом детали данной структуры определяют биологические функции ДНК в качестве материального носителя наследственной информации. В принципе, об этой роли ДНК стало известно несколько раньше (1944) в результате работ американского генетика О. Т. Эйвери с сотрудниками (см. Молекулярная генетика), но не было известно, в какой мере данная функция зависит от молекулярного строения ДНК. Это стало возможным лишь после того, как в лабораториях У. Л. Брэгга (См. Брэгга - Вульфа условие), Дж. Бернал а и др. были разработаны новые принципы рентгеноструктурного анализа, обеспечившие применение этого метода для детального познания пространственного строения макромолекул белков и нуклеиновых кислот.

Уровни молекулярной организации. В 1957 Дж. Кендрю установил трёхмерную структуру Миоглобин а, а в последующие годы это было сделано М. Перуцем в отношении Гемоглобин а. Были сформулированы представления о различных уровнях пространственной организации макромолекул. Первичная структура - это последовательность отдельных звеньев (мономеров) в цепи образующейся молекулы полимера. Для белков мономерами являются Аминокислоты , для нуклеиновых кислот - Нуклеотиды . Линейная, нитевидная молекула биополимера в результате возникновения водородных связей обладает способностью определённым образом укладываться в пространстве, например в случае белков, как показал Л. Полинг, приобретать форму спирали. Это обозначается как вторичная структура. О третичной структуре говорят, когда молекула, обладающая вторичной структурой, складывается далее тем или иным образом, заполняя трёхмерное пространство. Наконец, молекулы, обладающие трёхмерной структурой, могут вступать во взаимодействие, закономерно располагаясь в пространстве относительно друг друга и образуя то, что обозначается как четвертичная структура; её отдельные компоненты обычно называемые субъединицами.

Наиболее наглядным примером того, как молекулярная трёхмерная структура определяет биологические функции молекулы, служит ДНК. Она обладает строением двойной спирали: две нити, идущие во взаимно противоположном направлении (антипараллельно), закручены одна вокруг другой, образуя двойную спираль со взаимно комплементарным расположением оснований, т. е. так, что против определённого основания одной цепи всегда в другой цепи стоит такое основание, которое наилучшим образом обеспечивает образование водородных связей: адепин (А) образует пару с тимином (Т), гуанин (Г) - с цитозином (Ц). Такая структура создаёт оптимальные условия для важнейших биологических функций ДНК: количественного умножения наследственной информации в процессе клеточного деления при сохранении качественной неизменности этого потока генетической информации. При делении клетки нити двойной спирали ДНК, служащей в качестве матрицы, или шаблона, расплетаются и на каждой из них под действием ферментов синтезируется комплементарная новая нить. В результате этого из одной материнской молекулы ДНК получаются две совершенно тождественные ей дочерние молекулы (см. Клетка , Митоз).

Так же и в случае гемоглобина оказалось, что его биологическая функция - способность обратимо присоединять кислород в лёгких и затем отдавать его тканям - теснейшим образом связана с особенностями трёхмерной структуры гемоглобина и её изменениями в процессе осуществления свойственной ему физиологической роли. При связывании и диссоциации O 2 происходят пространственные изменения конформации молекулы гемоглобина, ведущие к изменению сродства содержащихся в нём атомов железа к кислороду. Изменения размеров молекулы гемоглобина, напоминающие изменения объёма грудной клетки при дыхании, позволили назвать гемоглобин «молекулярными лёгкими».

Одна из важнейших черт живых объектов - их способность тонко регулировать все проявления жизнедеятельности. Крупным вкладом М. б. в научные открытия следует считать раскрытие нового, ранее неизвестного регуляторного механизма, обозначаемого как аллостерический эффект. Он заключается в способности веществ низкой молекулярной массы - т. н. лигандов - видоизменять специфические биологические функции макромолекул, в первую очередь каталитически действующих белков - ферментов, гемоглобина, рецепторных белков, участвующих в построении биологических мембран (См. Биологические мембраны), в синаптической передаче (см. Синапсы) и т. д.

Три биотических потока. В свете представлений М. б. совокупность явлений жизни можно рассматривать как результат сочетания трёх потоков: потока материи, находящего своё выражение в явлениях обмена веществ, т. е. ассимиляции и диссимиляции; потока энергии, являющейся движущей силой для всех проявлений жизнедеятельности; и потока информации, пронизывающего собой не только всё многообразие процессов развития и существования каждого организма, но и непрерывную череду сменяющих друг друга поколений. Именно представление о потоке информации, внесённое в учение о живом мире развитием М. б., накладывает на неё свой специфический, уникальный отпечаток.

Важнейшие достижения молекулярной биологии. Стремительность, размах и глубину влияния М. б. на успехи в познании коренных проблем изучения живой природы справедливо сравнивают, например, с влиянием квантовой теории на развитие атомной физики. Два внутренне связанных условия определили это революционизирующее воздействие. С одной стороны, решающую роль сыграло обнаружение возможности изучения важнейших проявлений жизнедеятельности в простейших условиях, приближающихся к типу химических и физических экспериментов. С другой стороны, как следствие указанного обстоятельства, имело место быстрое включение значительного числа представителей точных наук - физиков, химиков, кристаллографов, а затем и математиков - в разработку биологических проблем. В своей совокупности эти обстоятельства и обусловили необычайно быстрый темп развития М. б., число и значимость её успехов, достигнутых всего за два десятилетия. Вот далеко не полный перечень этих достижений: раскрытие структуры и механизма биологической функции ДНК, всех типов РНК и рибосом (См. Рибосомы), раскрытие генетического кода (См. Код генетический); открытие обратной транскрипции (См. Транскрипция), т. е. синтеза ДНК на матрице РНК; изучение механизмов функционирования дыхательных пигментов; открытие трёхмерной структуры и её функциональной роли в действии ферментов (См. Ферменты), принципа матричного синтеза и механизмов биосинтеза белков; раскрытие структуры вирусов (См. Вирусы) и механизмов их репликации, первичной и, частично, пространственной структуры антител; изолирование индивидуальных Генов , химический, а затем биологический (ферментативный) синтез гена, в том числе человеческого, вне клетки (in vitro); перенос генов из одного организма в другой, в том числе в клетки человека; стремительно идущая расшифровка химической структуры возрастающего числа индивидуальных белков, главным образом ферментов, а также нуклеиновых кислот; обнаружение явлений «самосборки» некоторых биологических объектов всё возрастающей сложности, начиная от молекул нуклеиновых кислот и переходя к многокомпонентным ферментам, вирусам, рибосомам и т. д.; выяснение аллостерических и других основных принципов регулирования биологических функций и процессов.

Редукционизм и интеграция. М. б. является завершающим этапом того направления в изучении живых объектов, которое обозначается как «редукционизм», т. е. стремление свести сложные жизненные функции к явлениям, протекающим на уровне молекул и потому доступным изучению методами физики и химии. Достигнутые М. б. успехи свидетельствуют об эффективности такого подхода. Вместе с тем необходимо учитывать, что в естественных условиях в клетке, ткани, органе и целом организме мы имеем дело с системами возрастающей степени усложнённости. Такие системы образуются из компонентов более низкого уровня путём их закономерной интеграции в целостности, приобретающие структурную и функциональную организацию и обладающие новыми свойствами. Поэтому по мере детализации познаний о закономерностях, доступных раскрытию на молекулярном и примыкающих уровнях, перед М. б. встают задачи познания механизмов интеграции как линии дальнейшего развития в изучении явлений жизни. Отправной точкой здесь служит исследование сил межмолекулярных взаимодействий - водородных связей, ван-дер-ваальсовых, электростатических сил и т. д. Своей совокупностью и пространственным расположением они образуют то, что может быть обозначено как «интегративная информация». Её следует рассматривать как одну из главных частей уже упоминавшегося потока информации. В области М. б. примерами интеграции могут служить явления самосборки сложных образований из смеси их составных частей. Сюда относятся, например, образование многокомпонентных белков из их субъединиц, образование вирусов из их составных частей - белков и нуклеиновой кислоты, восстановление исходной структуры рибосом после разделения их белковых и нуклеиновых компонентов и т. д. Изучение этих явлений непосредственно связано с познанием основных феноменов «узнавания» молекул биополимеров. Речь идёт о том, чтобы выяснить, какие сочетания аминокислот - в молекулах белков или нуклеотидов - в нуклеиновых кислотах взаимодействуют между собой при процессах ассоциации индивидуальных молекул с образованием комплексов строго специфичного, наперёд заданного состава и строения. Сюда относятся процессы образования сложных белков из их субъединиц; далее, избирательное взаимовоздействие между молекулами нуклеиновых кислот, например транспортными и матричными (в этом случае существенно расширило наши сведения раскрытие генетического кода); наконец, это образование многих типов структур (например, рибосом, вирусов, хромосом), в которых участвуют и белки, и нуклеиновые кислоты. Раскрытие соответствующих закономерностей, познание «языка», лежащего в основе указанных взаимодействий, составляет одну из важнейших областей М. б., ещё ожидающую своей разработки. Эту область рассматривают как принадлежащую к числу фундаментальных проблем для всей биосферы.

Задачи молекулярной биологии. Наряду с указанными важными задачами М. б. (познанием закономерностей «узнавания», самосборки и интеграции) актуальным направлением научного поиска ближайшего будущего является разработка методов, позволяющих расшифровывать структуру, а затем и трёхмерную, пространственную организацию высокомолекулярных нуклеиновых кислот. В данное время это достигнуто в отношении общего плана трёхмерной структуры ДНК (двойной спирали), но без точного знания её первичной структуры. Быстрые успехи в разработке аналитических методов позволяют с уверенностью ждать достижения указанных целей на протяжении ближайших лет. Здесь, разумеется, главные вклады идут от представителей смежных наук, в первую очередь физики и химии. Все важнейшие методы, использование которых обеспечило возникновение и успехи М. б., были предложены и разработаны физиками (ультрацентрифугирование, рентгеноструктурный анализ, электронная микроскопия, ядерный магнитный резонанс и др.). Почти все новые физические экспериментальные подходы (например, использование ЭВМ, синхротронного, или тормозного, излучения, лазерной техники и др.) открывают новые возможности для углублённого изучения проблем М. б. В числе важнейших задач практического характера, ответ на которые ожидается от М. б., на первом месте стоит проблема молекулярных основ злокачественного роста, далее - пути предупреждения, а быть может, и преодоления наследственных заболеваний - «молекулярных болезней» (См. Молекулярные болезни). Большое значение будет иметь выяснение молекулярных основ биологического катализа, т. е. действия ферментов. К числу важнейших современных направлений М. б. следует отнести стремление расшифровать молекулярные механизмы действия гормонов (См. Гормоны), токсических и лекарственных веществ, а также выяснить детали молекулярного строения и функционирования таких клеточных структур, как биологические мембраны, участвующие в регуляции процессов проникновения и транспорта веществ. Более отдалённые цели М. б. - познание природы нервных процессов, механизмов памяти (См. Память) и т. д. Один из важных формирующихся разделов М. б. - т. н. генная инженерия, ставящая своей задачей целенаправленное оперирование генетическим аппаратом (Геном ом) живых организмов, начиная с микробов и низших (одноклеточных) и кончая человеком (в последнем случае прежде всего в целях радикального лечения наследственных заболеваний (См. Наследственные заболевания) и исправления генетических дефектов). О более обширных вмешательствах в генетическую основу человека речь может идти лишь в более или менее отдалённом будущем, т. к. при этом возникают серьёзные препятствия как технического, так и принципиального характера. В отношении микробов, растений, а возможно, и с.-х. животных такие перспективы весьма обнадёживающи (например, получение сортов культурных растений, обладающих аппаратом фиксации азота из воздуха и не нуждающихся в удобрениях). Они основаны на уже достигнутых успехах: изолирование и синтез генов, перенос генов из одного организма в другой, применение массовых культур клеток в качестве продуцентов хозяйственных или медицинских важных веществ.

Организация исследований по молекулярной биологии. Быстрое развитие М. б. повлекло за собой возникновение большого числа специализированных научно-исследовательских центров. Количество их быстро возрастает. Наиболее крупные: в Великобритании - Лаборатория молекулярной биологии в Кембридже, Королевский институт в Лондоне; во Франции - институты молекулярной биологии в Париже, Марселе, Страсбуре, Пастеровский институт; в США - отделы М. б. в университетах и институтах в Бостоне (Гарвардский университет, Массачусетсский технологический институт), Сан-Франциско (Беркли), Лос-Анджелесе (Калифорнийский технологический институт), Нью-Йорке (Рокфеллеровский университет), институты здравоохранения в Бетесде и др.; в ФРГ - институты Макса Планка, университеты в Гёттингене и Мюнхене; в Швеции - Каролинский институт в Стокгольме; в ГДР - Центральный институт молекулярной биологии в Берлине, институты в Йене и Галле; в Венгрии - Биологический центр в Сегеде. В СССР первый специализированный институт М. б. был создан в Москве в 1957 в системе АН СССР (см. ); затем были образованы: институт биоорганической химии АН СССР в Москве, институт белка в Пущине, Биологический отдел в институте атомной энергии (Москва), отделы М. б. в институтах Сибирского отделения АН в Новосибирске, Межфакультетская лаборатория биоорганической химии МГУ, сектор (затем институт) молекулярной биологии и генетики АН УССР в Киеве; значительная работа по М. б. ведётся в институте высокомолекулярных соединений в Ленинграде, в ряде отделов и лабораторий АН СССР и других ведомств.

Наряду с отдельными научно-исследовательскими центрами возникли организации более широкого масштаба. В Западной Европе возникла Европейская организация по М. б. (ЕМБО), в которой участвует свыше 10 стран. В СССР при институте молекулярной биологии в 1966 создан научный совет по М. б., являющийся координирующим и организующим центром в этой области знаний. Им выпущена обширная серия монографий по важнейшим разделам М. б., регулярно организуются «зимние школы» по М. б., проводятся конференции и симпозиумы по актуальным проблемам М. б. В дальнейшем научные советы по М. б. были созданы при АМН СССР и многих республиканских Академиях наук. С 1966 выходит журнал «Молекулярная биология» (6 выпусков в год).

За сравнительно короткий срок в СССР вырос значительный отряд исследователей в области М. б.; это учёные старшего поколения, частично переключившие свои интересы из др. областей; в главной же своей массе это многочисленные молодые исследователи. Из числа ведущих учёных, принявших деятельное участие в становлении и развитии М. б. в СССР, можно назвать таких, как А. А. Баев, А. Н. Белозерский, А. Е. Браунштейн, Ю. А. Овчинников, А. С. Спирин, М. М. Шемякин, В. А. Энгельгардт. Новым достижениям М. б. и молекулярной генетики будет способствовать постановление ЦК КПСС и Совета Министров СССР (май 1974) «О мерах по ускорению развития молекулярной биологии и молекулярной генетики и использованию их достижений в народном хозяйстве».

Лит.: Вагнер Р., Митчелл Г., Генетика и обмен веществ, пер. с англ., М., 1958; Сент-Дьердь и А., Биоэнергетика, пер. с англ., М., 1960; Анфинсен К., Молекулярные основы эволюции, пер. с англ., М., 1962; Стэнли У., Вэленс Э., Вирусы и природа жизни, пер. с англ., М., 1963; Молекулярная генетика, пер. с. англ., ч. 1, М., 1964; Волькенштейн М. В., Молекулы и жизнь. Введение в молекулярную биофизику, М., 1965; Гауровиц Ф., Химия и функции белков, пер. с англ., М., 1965; Бреслер С. Е., Введение в молекулярную биологию, 3 изд., М. - Л., 1973; Ингрэм В., Биосинтез макромолекул, пер. с англ., М., 1966; Энгельгардт В. А., Молекулярная биология, в кн.: Развитие биологии в СССР, М., 1967; Введение в молекулярную биологию, пер. с англ., М., 1967; Уотсон Дж., Молекулярная биология гена, пер. с англ., М., 1967; Финеан Дж., Биологические ультраструктуры, пер. с англ., М., 1970; Бендолл Дж., Мышцы, молекулы и движение, пер. с англ., М., 1970; Ичас М., Биологический код, пер. с англ., М., 1971; Молекулярная биология вирусов, М., 1971; Молекулярные основы биосинтеза белков, М., 1971; Бернхард С., Структура и функция ферментов, пер. с англ., М., 1971; Спирин А. С., Гаврилова Л. П., Рибосома, 2 изд., М., 1971; Френкель-Конрат Х., Химия и биология вирусов, пер. с англ., М., 1972; Смит К., Хэнеуолт Ф., Молекулярная фотобиология. Процессы инактивации и восстановления, пер. с англ., М., 1972; Харрис Г., Основы биохимической генетики человека, пер. с англ., М., 1973.

В. А. Энгельгардт.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ позднелат. molecula, уменьшительное от лат. moles масса; биология) - медико-биологическая наука, изучающая явления жизни на уровне биологических макромолекул - белков и нуклеиновых кислот, таких простых систем, как бесклеточные структуры, вирусы и, как предел, - на уровне клетки. Большая часть таких объектов является неживой или наделенной элементарными проявлениями жизни. Положение М. б. в системе биол, наук определяется представлениями о структурных уровнях живой материи, т. е. эволюционно сложившихся формах жизни, начинающихся с пребиотических ступеней и кончающихся сложными системами: малые органические молекулы - макромолекулы - клетка и субклеточные структуры - организм и т. д., соответственно к-рым строятся и уровни познания. Исторически М. б. сформировалась в результате исследования биологических макромолекул, в силу чего М. б. рассматривается как раздел биохимии (см.). М. б. является вместе с тем пограничной наукой, возникшей на стыке биохимии, биофизики (см.), органической химии (см.), цитологии (см.) и генетики (см.). Идея М. б. заключается в раскрытии элементарных механизмов основных процессов жизнедеятельности - наследственности (см.), изменчивости (см.), движения и др.- через исследование биол, макромолекул. Молекулярно-биол. представления нашли благодатную почву особенно в генетике - возникла молекулярная генетика (см.), и именно здесь были достигнуты результаты, к-рые способствовали развитию М. б. и признанию ее принципов. Представления М. б. имеют эвристическую (познавательную) ценность, т. к. на всех уровнях развития живой материи существуют и действуют биол, макромолекулы - белки (см.) и нуклеиновые кислоты (см.). По этой причине границы М. б. трудно определимы: она оказывается всепроникающей наукой.

Само название «молекулярная биология» принадлежит англ. кристаллографу Астбери (W. Т. Astbury). Формальной датой возникновения М. б. считают 1953 г., когда Дж. Уотсон и Ф. Крик установили структуру ДНК и высказали подтвердившееся позже предположение о механизме ее репликации, лежащей в основе наследственности. Но по крайней мере с 1944 г., начиная с работ Эйвери (О. Th. Avery), накапливались факты, указывавшие на генетическую роль ДНК; Н. К. Кольцов высказал идею о матричном синтезе в весьма ясной форме еще в 1928 г.; изучение молекулярных основ мышечного сокращения началось с работ В. А. Энгельгардта и М. Н. Любимовой, опубликованных в 1939-1942 гг. М. б. развивалась также в сфере эволюционного учения и систематики. В СССР инициатором изучения нуклеиновых к-т и исследований по молекулярным основам эволюции был А. Н. Белозерский.

Отличительная черта М. б. состоит в характере наблюдений, в ее методических приемах и построении эксперимента. М. б. заставила биологов по-новому взглянуть на материальную основу жизнедеятельности. Для молекулярно-биол. исследований характерно сопоставление биол, функций с хим. и физ. характеристиками (свойствами) биополимеров и в особенности с их пространственным строением.

Для понимания закономерностей строения нуклеиновых к-т и их поведения в клетке важнейшее значение имеет принцип комплементарности оснований в двухтяжевых структурах нуклеиновых к-т, установленный в 1953 г. Дж. Уотсоном и Ф. Криком, Признание значения пространственных отношений нашло свое выражение в представлении о комплементарности поверхностей макромолекул и молекулярных комплексов, составляющей необходимое условие проявления слабых сил, действующих лишь на коротких дистанциях и способствующих созданию морфол, разнообразия биол. структур, их функциональной подвижности. Эти слабые силы участвуют в образовании комплексов типа фермент - субстрат, антиген - антитело, гормон - рецептор и т. п., в явлениях самосборки биол, структур, напр, рибосом, в образовании пар азотистых оснований в молекулах нуклеиновых к-т и в тому подобных процессах.

М. б. направила внимание биологов на простые, стоящие у границ жизни объекты, ввела в арсенал биол, исследований идеи и точные методы химии и физики. Мутационный процесс получил истолкование на молекулярном уровне как выпадение, вставка и перемещение отрезков ДНК, замена пары азотистых оснований в функционально значимых отрезках генома (см. Мутация). Явления мутагенеза (см.) были, т. о., переведены на хим. язык. Благодаря методам М. б. были раскрыты молекулярные основы таких генетических процессов у прокариотов, как рекомбинация (см.), трансдукции (см.), трансформация (см.), трансфекция, сексдукция. Достигнуты значительные успехи в изучении строения хроматина и хромосом эукариотов; усовершенствование методов культивирования и гибридизации животных клеток создало возможность развития генетики соматических клеток (см.). Регуляция репликации ДНК нашла свое выражение в представлении о репликоне Ф. Жакоба и Бреннера (S. Brenner).

В области биосинтеза белка был установлен так наз. центральный постулат, характеризующий следующее движение генетической информации: ДНК -> информационная РНК -> белок. Согласно этому постулату, белок является своего рода информационным клапаном, препятствующим возвращению информации на уровень РНК и ДНК. В процессе развития М. б. в 1970 г. Темином (H. Temin) и Балтимором (D. Baltimore) было открыто явление обратной транскрипции (в природе синтез ДНК происходит у онкогенных РНК-содержащих вирусов с помощью специального фермента - обратной транскриптазы). Синтезы белков и нуклеиновых к-т происходят по типу матричных синтезов, для их протекания необходима матрица (шаблон) - исходная полимерная молекула, к-рая предопределя-ет последовательность нуклеотидов (аминокислот) в синтезируемой копии. Такими матрицами при репликации и транскрипции является ДНК и при трансляции - информационная РНК. Генетический код (см.) формулирует способ «записи» наследственной информации в информационной РНК, другими словами, он согласует последовательность нуклеотидов в нуклеиновых к-тах и аминокислот в белках. С биосинтезом белка связана транскрипция - синтез информационных РНК на матрице ДНК, катализируемый РНК-полимеразами; трансляция - синтез белка на связанной с рибосомой информационной РНК, протекающий по весьма сложному механизму, в к-ром участвуют десятки вспомогательных белков и транспортные РНК (см. Рибосомы). Регуляция белкового синтеза наиболее изучена на уровне транскрипции и сформулирована в представлении Ф. Жакоба и Моно (J. Monod) об опероне, белках-репрессорах, аллостерическом эффекте, позитивной и негативной регуляции. Разнородным по своему содержанию и еще менее завершенным, чем предыдущие, разделом М. б. является целый ряд проблем фундаментального и прикладного характера. К ним относится репарация повреждений генома, причиненных коротковолновой радиацией, мутагенами (см.) и другими влияниями. Большую самостоятельную область составляют исследования механизма действия ферментов, основанные на представлениях о трехмерной структуре белков и роли слабых хим. взаимодействий. М. б. выяснила многие детали строения и развития вирусов, в особенности бактериофагов. Изучение гемоглобинов у лиц, страдающих серповидно-клеточной анемией (см.) и другими гемоглобинопатиями (см.), положило начало изучению структурной основы «молекулярных болезней», врожденных «ошибок» метаболизма (см. Наследственные болезни). Самая поздняя ветвь М. б.- генная инженерия (см.) - разрабатывает методы конструирования наследственных структур в виде молекул рекомбинантных ДНК.

В молекулярно-биол. опытах находят применение различные способы хроматографии (см.) и ультрацентрифугирования (см.), рентгеноструктурный анализ (см.), электронная микроскопия (см.), молекулярная спектроскопия (электронный парамагнитный и ядерный магнитный резонанс). Начато использование синхротронного (магнитно-тормозного) излучения, дифракции нейтронов, мессбауэровской спектроскопии, лазерной техники. В экспериментах широко применяются модельные системы, получение мутаций. Использование радиоактивных и (в меньшей мере) тяжелых изотопов составляет в М. б. обычный аналитический метод, так же как применение математических методов и ЭВМ. Если раньше молекулярные биологи ориентировались гл. обр. на физ. методы, созданные для исследования полимеров небиол. происхождения, то сейчас наблюдается все усиливающаяся тенденция к использованию хим. методов.

Для развития М. б. в СССР большое значение имело постановление ЦК КПСС и Совета Министров СССР «О мерах по ускорению развития молекулярной биологии и молекулярной генетики и использованию их достижений в народном хозяйстве», опубликованное 20 мая 1974 г. Исследования координируются Межведомственным научно-техническим советом по проблемам молекулярной биологии и молекулярной генетики при ГКНТ Совета Министров СССР и АН СССР, Научным советом по проблемам молекулярной биологии АН СССР, аналогичными советами АН союзных республик и отраслевых академий. Издается журнал «Молекулярная биология» (с 1967 г.) и реферативный журнал с тем же названием. Исследования по М. б. ведутся в ин-тах АН СССР, АМН СССР, республиканских академий наук, Главмикробиопрома, в высших учебных заведениях страны. В социалистических странах работают многие лаборатории такого профиля. В Европе действуют Европейская молекулярно-биологическая организация (ЕМБО), Европейская молекулярно-биологическая лаборатория (ЕМБЛ) в Гейдельберге, Европейская молекулярно-биологическая конференция (ЕМБК). Работают крупные специализированные лаборатории в США, Франции, Великобритании, ФРГ и других странах.

Специальные периодические издания, посвященные проблемам М. б., за рубежом: «Journal of Molecular Biology», «Nucleic Acids Research», «Molecular Biology Reports», «Gene».

Обзоры по М. б. публикуются в серии «Молекулярная биология» ВИНИТИ, в «Progress in Nucleic Acids Research and Molecular Biology», «Progress in Biophysics and Molecular Biology», «Annual Rewiew of Biochemistry», изданиях «Cold Spring Harbor Symposia on Quantitative Biology».

Библиография: Ашмарин И. П. Молекулярная биология, Л., 1977; Белозерский А. Н. Молекулярная биология - новая ступень познания природы, М., 1970; Бреслер С. Е. Молекулярная биология, Л., 1973; Кольцов Н. К. Наследственные молекулы, Бюлл. Моск. об-ва испыт. природы, отд. биол., т. 70, в. 4, с. 75, 1965; Октябрь и наука, под ред. А.П. Александрова и др., с. 393, 417, М., 1977; Северин С. Е. Современные проблемы физико-химической биологии, в кн.: 250 лет Академии наук СССР, с. 332, М., 1977; Уотсон Дж. Молекулярная биология: гена, пер. с англ., М., 1978; Энгельгардт В. А. Молекулярная биология, в кн.: Развитие биол, в СССР, под ред. Б. Е. Быховского, с. 598, М., 1967.