Базовые виды горения. Условия, необходимые для горения

Горением называется химическая реакция окисления, со­провождающаяся выделением тепла и излучением света. Горе- пне возникает и протекает при определенных условиях. Для пего необходимы горючее вещество, кислород и источник вос­пламенения.

Чтобы возникло горение, горючее вещество должно быть на­грето до определенной температуры источником воспламенения (пламенем, искрой, накаленным телом) или тепловым прояв­лением какого-либо другого вида энергии: химической (экзо­термическая. реакция), механической (удар, сжатие, трение) и т. д.

Выделившиеся при нагревании горючего вещества пары и газы смешиваются с воздухом и окисляются, образуя горючую смесь. По мере накопления тепла в результате окисления газов и паров скорость химической реакции увеличивается, вследствие чего происходит самовоспламенение горючей смеси и появля­ется пламя.

С появлением пламени наступает горение, которое при бла-« гоприятных условиях продолжается до полного сгорания ве­щества.

В установившемся процессе горения постоянным источником воспламенения является зона горения, т. е. область, где про­текает химическая реакция, выделяется тепло и излучается свет.

Для возникновения и протекания горения горючее вещество н кислород должны находиться в определенном количественном соотношении. Содержание кислорода в воздухе для большинства горючих веществ должно быть не менее 14-18%".

Известно много различных видов очагов горения (горение свечи, мощной промышленной топки, пожар здания или соору­жения и прочее). Все они значительно отличаются друг от друга и различны по характеру горючего вещества, однако основ­ные явления, протекающие при горении и в процессе его, оди­наковы.

Рассмотрим процесс горения простого светильника (свечи восковой, стеариновой и др.). Зажженная свеча горит устойчиво в нормальной среде воздуха до тех пор, пока хватает для этого содержащегося в ней горючего (воска, стеарина, парафина). Свеча потухнет вследствие нарушения одного из основных условий

Механизм процесса горения

Сгорание является сложным физико-химическим процессом. На большую часть показателей двигателя влияют, однако, не физико-химические особенности процесса сгорания, а закономерности тепловыделения и вызываемого им изменения давления и температуры в цилиндре. Ими определяются энергетические и экономические показатели цикла, статические и динамические нагрузки на детали, оцениваемые максимальным давлением цикла р z и скоростью нарастания давления при сгорании (dp/d(j) max (МПа/°п. к. в.) или (dp/dt) max (МПа/с), тепловая напряженность деталей, оцениваемая по распределению температур и тепловых потоков, интенсивность шумоизлучения, в определенной степени механические потери в двигателе и токсичность отработавших газов. Благоприятные показатели работы двигателя обеспечиваются при тепловыделении, начинающемся за 5-15° до в. м. т., вызывающем равномерное повышение давления в интервале углов поворота коленчатого вала 15-30° и в основном завершающемся за 45-50°. Теплоиспользование в действительном цикле с таким характером тепловыделения мало отличается от имеющего место в цикле с подводом теплоты при V = const , так как поршень у в. м. т. движется с малыми скоростями и поэтому за время тепловыделения проходит малый путь. Так, если тепловыделение завершается через 35° после в. м. т., то степень последующего расширения газов отличается от степени сжатия лишь на 11-12%. В действительности постепенное тепловыделение выгоднее мгновенного в связи с уменьшением потерь теплоты в охлаждающую среду и механических потерь двигателя. Физико-химические особенности процесса сгорания оказывают существенное влияние на излучение пламени, отложения на деталях и токсичность отработавших газов.

Основы теории горения . По представлениям кинетики химических реакций, акт реагирования происходит при столкновении молекул, энергия которых превосходит определенное для каждой из реакций значение, достаточное для разрушения существующих внутримолекулярных связей и замещения их новыми. Это критическое значение энергии называют энергией активации, а сами молекулы, вступающие в реакцию,- термически активными. Число столкновений в единицу времени термически активных молекул существенно увеличивается с температурой. Оно также зависит от природы реагентов, их соотношения в смеси и давления. При увеличении давления частота столкновений возрастает вследствие увеличения числа молекул каждого из реагентов в единице объема, причем в тем большей степени, чем большее число молекул n м участвует в элементарном акте реакции. Скорость химических реакций, измеряемая количеством вещества, прореагировавшего в единице объема в единицу времени [кг/(с м 3) или кмоль/(с м 3)],

Здесь С - концентрация реагента; t - время; К о - константа столкновений, зависящая от природы и соотношения реагентов в смеси; р - давление; n м - порядок химической реакции; Q a - энергия активации, зависящая от природы реагентов, механизма реакции и параметров состояния; Т - температура смеси, mR - универсальная газовая постоянная.

Приведенная зависимость справедлива для случая, когда концентрация реагентов поддерживается неизменной. В действительности она изменяется. Поэтому в ходе реакции скорость ее достигает максимума, а затем снижается до нуля.

Изложенных ранее представлений о химических реакциях, происходящих в результате соударения термически активных молекул исходных веществ, оказалось недостаточно для объяснения ряда наблюдений, так как: 1) экспериментально полученные зависимости скорости реакции от давления имеют нередко дробный положительный показатель степени, хотя очевидно, что в реакции не может участвовать дробное число молекул; 2) добавка некоторых веществ, так называемых присадок, к топливам существенно влияет на процесс горения, несмотря на очень малые концентрации; 3) зависимость скоростей предпламенных реакций от параметров состояния заметно отклоняется от определяемой по (2.17) вплоть до того, что в некотором диапазоне увеличение температуры сопровождается уменьшением скорости реакции (отрицательная температурная зависимость); 4) ряд реакций происходит с большими скоростями без повышения температуры смеси.

Эти и многие другие явления удалось объяснить на основании теории цепных реакций, в разработке которой выдающаяся роль принадлежит школе советских ученых во главе с акад. Н. Н. Семеновым. В соответствии с представлениями этой теории подавляющее большинство химических реакций идет по цепному механизму, т. е. исходные вещества переходят в конечные через более или менее длинную цепь отдельных реакций с образованием ряда промежуточных, нередко крайне неустойчивых, соединений. Ведущую роль в развитии цепной реакции играют химически активные частицы, обладающие свободными валентностями, легко вступающие в соединение с исходными или промежуточными продуктами без термической активации. В результате указанных реакций получаются конечные продукты и одновременно вновь образуется некоторое количество таких же или других активных частиц, которые снова вступают в реакции, возобновляя, цепь превращений.

Если в результате элементарного акта химически активной частицы с какой-либо молекулой воссоздается лишь одна активная частила, то имеет место простое продолжение реакции и она является неразветвленной. Скорость неразветвленной цепной реакции определяется числом активных частиц, возникающих в единицу времени, и средней длиной цепи. Химически активные частицы образуются в результате столкновений или самопроизвольного распада термически активных молекул. Поэтому зависимость w = f(p, Т) для неразветвленной цепной реакции аналогична (2.17). При этом рассматривают некоторую эффективную энергию активации, характеризующую итоговую зависимость скорости процесса от температуры. Если в результате элементарной реакции с участием одной активной частицы возникают две или большее число новых активных частиц, то имеет место гак называемое разветвление цепи. Скорость такой реакции очень быстро возрастает со временем даже при отсутствии повышения температуры. Обрыв цепи происходит при столкновении между собой химически активных частиц и в результате адсорбции их стенками, окружающими реагирующую смесь. Поэтому увеличение концентрации химически активных частиц сопровождается увеличением числа обрывов цепей и, как следствие, скорость разветвленной цепной реакции стабилизируется, а затем уменьшается в результате выгорания исходных веществ.

В соответствии с теорией цепных реакций дробный порядок реакции - результат сложного механизма течения реакции, включающей в себя ряд элементарных стадий, каждая из которых имеет свой порядок. В зависимости от значимости каждой из промежуточных стадий получаются те или иные значения показателя степени при р в (2.17). То обстоятельство, что каждая химически активная частица является источником целой серии превращений, позволяет объяснить ускоряющее или тормозящее действие небольших количеств присадок к топливу. Отрицательная температурная зависимость w объясняется тем, что увеличение температуры приводит к росту концентрации промежуточного продукта реакции, тормозящего образование конечных продуктов.

П. о. веществ и материалов - совокупность свойств веществ (материалов), способствующих возникновению и (или) развитию горения и последующего распространения опасных факторов пожара. П. о. может быть присуща негорючим веществам, которые способны при взаимодействии с др. веществами вызывать горение или усиливать его (функция окислителя); производить тепловую энергию (функция источника зажигания) или горючие газы (функция поставщика горючего). Такие вещества относят к категории особо пожаровзрывоопасных исходя из их несовместимости. Сущность горения заключается в следующем - нагревание источников зажигания горючего материала до начала его теплового разложения. В процессе теплового разложения образуется угарный газ, вода и большое количество тепла. Выделяется также углекислый газ и сажа, которая оседает на окружающем рельефе местности. Время от начала зажигания горючего материала до его воспламенения - называет временем воспламенения. Максимальное время воспламенения - может составлять несколько месяцев. С момента воспламенения начинается пожар

Составляющие пожара и взрыва

Для горения необходимы три элемента:

1. горючее вещество, которое будет испаряться и гореть,

2. кислород для соединения с горючим веществом и

3. теплота для повышения температуры паров горючего вещества до момента их воспламенения.

Символический пожарный треугольник иллюстрирует это положение и дает представление о двух важных факторах, необходимых для предотвращения и тушения пожаров:

1. если одна из сторон треугольника отсутствует, пожар не может начаться;

2. если одну из сторон треугольника исключить, пожар погаснет.

Пожарный треугольник - простейшее представление трех факторов, необходимых для существования пожара, но он не поясняет природу пожара. В частности, он не включает цепную реакцию, возникающую между горючим веществом, кислородом и теплотой в результате химической реакции.

Пожарный тетраэдр - более наглядная иллюстрация процесса сгорания (тетраэдр - это многогранник с четырьмя треугольными гранями). Он очень полезен для понимания процесса сгорания, так как на нем имеется место для цепной реакции и каждая грань касается трех других.

Для осуществления горения необходимы три элемента: горючее вещество (1), кислород (2) и теплота (3), а для поддержания горения - цепная реакция (4).

Процесс горения характеризуется так называемым "пожарным тетраэдром". Если убрать одну из граней тетраэдра, горение прекратится.

Основная разница между пожарным треугольником и пожарным тетраэдром заключается в том, что тетраэдр показывает, каким образом за счет цепной реакции поддерживается пламенное горение, т.е. как грань цепной реакции удерживает остальные три грани от падения.

Цепная реакция начинается следующим образом: образующаяся при горении паров теплота воспламеняет все большее количество паров, при горении которых снова выделяется все большее количество теплоты, воспламеняющей еще большее количество паров. В результате этого постоянно нарастающего процесса горение усиливается. Пока горючего вещества много, пожар продолжает развиваться, пламя разрастается.

Через некоторое время количество паров, выделяющихся из горючего вещества, достигает максимума и начинает стабилизироваться, в результате чего горение протекает с устойчивой скоростью. Это продолжается до тех пор, пока не израсходуется основная часть горючего вещества. Затем окисляется меньшее количество паров и меньше образуется теплоты. Процесс начинает затухать. Происходит выделение все меньшего количества паров, меньше становится теплоты и огня, пожар постепенно угасает. При сгорании твердых горючих веществ может остаться зола, и еще какое-то время будет продолжаться тление. Жидкие горючие вещества выгорают полностью.

ГОРЮЧИЕ ВЕЩЕСТВА (МАТЕРИАЛЫ) – вещества (материалы), способные к взаимодействию с окислителем (кислородом воздуха) в режиме горения. По горючести вещества (материалы) подразделяют на три группы:

§ негорючие вещества и материалы не способные к самостоятельному горению на воздухе;

§ трудногорючие вещества и материалы – способные гореть на воздухе при воздействии дополнительной энергии источника зажигания, но не способные самостоятельно гореть после его удаления;

§ горючие вещества и материалы – способные самостоятельно гореть после воспламенения илисамовоспламенения самовозгорания.

Горючие вещества (материалы) – понятие условное, так как в режимах, отличных от стандартной методики, негорючие и трудногорючие вещества и материалы нередко становятся горючими.

Среди горючих веществ имеются вещества (материалы) в различных агрегатном состоянии: газы, пары, жидкости, твёрдые вещества (материалы), аэрозоли. Практически все органические химические вещества относятся к горючим веществам. Среди неорганических химических веществ также имеются горючие вещества (водород, аммиак, гидриды, сульфиды, азиды, фосфиды, аммиакаты различных элементов).

Горючие вещества (материалы) характеризуются показателями пожарной опасности. Введением в состав этих веществ (материалов) различных добавок (промоторов, антипиренов, ингибиторов ) можно изменять в ту или иную сторону показатели их пожарной опасности.

Окислитель является второй стороной треугольника горения. Обычно в качестве окислителя при горении выступает кислород воздуха, однако могут быть и другие окислители - окислы азота: N,0^, NO, C1, и т.п.

Критическим показателем для кислорода воздуха как окислителя, является его концентрация в воздушной среде закрытого судового помещения в объемных пределах выше 12-14%. Ниже этой концентрации горение абсолютного большинства горючих веществ не происходит. Однако некоторые горючие вещества способны гореть и при более низких концентрациях кислорода в окружающей газовоздушной среде.

САМОВОСПЛАМЕНЕНИЕ - это быстрое самоускорение экзотермической химической реакции, приводящее к появлению яркого свечения - пламени. Самовоспламенение происходит в результате того, что при окислении материала кислородом воздуха образуется тепла больше, чем успевает отводиться за пределы реагирующей системы. Для жидких и газообразных горючих веществ это возникает при критических параметрах температуры и давления.

1 - период загорания 3 - период горения

2 - развития пожара 4 - период затухания

При рассмотрении процессов горения следует различать следующие его виды: вспышка, возгорание, воспламенение, самовоспламенение, самовозгорание, взрыв.

Вспышка- это быстрое сгорание горючей смеси, не сопровождающееся образованием сжатых газов.

Возгорание- возникновение горения под воздействием источника зажигания.

Воспламенение- возгорание, сопровождающееся появлением пламени.

Возгораемость- способность возгораться (воспламеняться) под воздействием источника зажигания.

Самовозгорание- это явление резкого увеличения скорости экзотермических реакций, приводящее к возникновению горения веществ (материала, смеси) при отсутствии источника зажигания.

Самовоспламенение- это самовозгорание, сопровождающееся появлением пламени.

Взрывомназывается чрезвычайно быстрое химическое (взрывчатое) превращение вещества, сопровождающееся выделением энергии и образованием сжатых газов, способных производить механическую работу.

Необходимо понимать различие между процессами возгорания (воспламенения) и самовозгорания (самовоспламенения). Для того чтобы возникло воспламенение, необходимо внести в горючую систему тепловой импульс, имеющий температуру, превышающую температуру самовоспламенения вещества. Возникновение же горения при температурах ниже температуры самовоспламенения относят к процессу самовозгорания (самовоспламенения).

ТЛЕНИЕ - горение твердых веществ (материалов), характеризующееся отсутствием пламени , сравнительно низкими скоростями распространения пламени по веществу (материалу) и температурами 400-600°C, часто сопровождающееся выделением дыма и др. продуктов неполного сгорания. Указанные признаки свидетельствуют о Т. как неинтенсивно протекающем процессе окисления (горения) из-за недостатка окислителя в зоне горения и (или) активно рассеивающейся из этой зоны теплоты. Т. может быть переходной стадией после прекращения пламенного горения материала или удаления внешнего источника зажигания . Такое Т. называютостаточным .

Ожог – это повреждение ткани тела человека из-за внешнего воздействия. К внешним воздействиям можно отнести несколько факторов. Например, термический ожог. Это ожог, который наступил вследствие воздействия горячих жидкостей или пара, предметов сильно раскаленных.

Электрические ожоги – при таком ожоге поражаются еще и внутренние органы электромагнитным полем.

Химические ожоги - те, которые наступили из-за действия йода, например, некоторых растворов кислот. Вообщем различных разъедающих жидкостей.

Если ожог получен вследствие ультрафиолета или инфракрасного излучения, то это лучевой ожог.

По глубине поражения тканей ожоги делятся на четыре степеней.

Ожог 1 степени характеризуется покраснением и небольшим отеком кожных покровов. Обычно выздоровление в этих случаях наступает на четвертые или пятые сутки.

Ожог 2 степени – появление пузырей на покрасневшей коже, которые могут образоваться не сразу. Ожоговые пузыри наполнены прозрачной желтоватой жидкостью, при их разрыве обнажается ярко-красная болезненная поверхность росткового слоя кожи. Заживление, если к ране присоединилась инфекция, происходит в течение десяти – пятнадцати дней, без образования рубца.

Ожог 3 степени – омертвление кожи с образованием струпа серого или черного цвета.

Четвертая степень – омертвление и даже обугливание не только кожи, но и глубже лежащих тканей – мышц, сухожилий, и даже костей. Омертвевшие ткани частично расплавляются и отторгаются в течение нескольких недель. Заживление протекает очень медленно. На месте глубоких ожогов часто образуются грубые рубцы, которые при ожоге лица, шеи и суставов ведут к обезображиванию. На шее и в области суставов при этом, как правило, образуются рубцовые контрактуры.

Поверхность ожогов

Существует процентное соотношение степени поражения всего тела. Для головы – это девять процентов от всего тела. Для каждой руки – тоже девять процентов, грудь – восемнадцать процентов, каждая нога – по восемнадцать процентов и спина также восемнадцать процентов.

Такое деление на процентное соотношение поврежденных тканей к здоровым, позволяет быстро оценить состояние больного и правильно дать заключение можно ли спасти человека.

Вынести пострадавшего из огня, потушить на нем горящую одежду или сорвать ее, охладить обожженные участки тела холодной водой, снегом или льдом до прекращения острых болей.

Самому пострадавшему, если он в сознании и пытается бежать, нельзя сбивать пламя незащищенными руками, нельзя двигаться в горящей одежде, поскольку горение из-за повышенного притока кислорода только усилится. При возможности тут же надо погрузиться в холодную воду, снег.

Обработка обожженных поверхностей должна производиться чистыми руками, чтобы не занести на раневую поверхность инфекцию. Ожоги первой степени обрабатывают семидесяти градусным спиртом или одеколоном. При ожогах второй степени на обожженную поверхность после обработки ее спиртом или одеколоном надо наложить сухую стерильную повязку. Пузыри при этом вскрывать не следует.

Нельзя отрывать от ожоговой поверхности приставшие остатки одежды, их нужно обрезать НПО границе ожога и наложить повязку поверх них. Рот и нос оказывающего помощь и пострадавшего должны быть закрыты марлей или хотя бы чистым носовым платком либо косынкой для того, чтобы при разговоре или дыхании изо рта и носа обожженные места не попадали болезнетворные бактерии, способные вызвать заражение.

При падении сердечно-сосудистой деятельности (снижение артериального давления, учащение пульса при слабом его наполнении) можно ввести подкожно 1-2 ампулы кофеина, кордиамина. Пострадавшего после этого следует укутать в одеяло, но не перегревать его, затем напоить большим количеством жидкости – чаем, минеральной водой, после чего немедленно транспортировать в больницу. И еще: обожженную поверхность нельзя смазывать никакими мазями или засыпать никакими порошками.

Зона горения (зона активного горения или очаг возгорания) - часть пространства, в котором протекают процессы термического разложения или испарения горючих веществ и материалов (твердых, жидких, газов, паров) в объеме диффузионного факела пламени. Горение может быть пламенным (гомогенным) и беспламенным (гетерогенным). При пламенном горении границами зоны горения являются поверхность горящего материала и тонкий светящийся слой пламени (зона реакции окисления), при беспламенном - раскаленная поверхность горящего вещества. Примером беспламенного горения может служить горение кокса, древесного угля или тление, например, войлока, торфа, хлопка и т.д.

Зона теплового воздействия - это пространство вокруг зоны горения, в котором температура в результате теплообмена достигает значений, вызывающих разрушающее воздействие на окружающие предметы и опасна для человека.

Зона задымления - пространство, смежное с зоной горения, в которое возможно распространение продуктов горения. Скорость выгорания характеризуется потерей массы горючих материалов с единицы поверхности во времени. Этот параметр определяет интенсивность тепловыделения во время пожара, его основные характеристики необходимо учитывать при пожаротушении.

Для прекращения горения необходимо: не допустить проникновения в зону горения окислителя (кислорода воздуха), а также горючего вещества; охладить эту зону ниже температуры воспламенения (самовоспламенения); разбавить горючие вещества негорючими; интенсивно тормозить скорость химических реакций в пламени (ингибированием); механически срывать (отрывать) пламя.

На этих принципиальных методах и основаны известные способы и приемы тушения пожаров.

К огнегасительным веществам относятся: вода, химическая и воздушно-механическая пены, водные растворы солей, инертные и негорючие газы, водяной пар, галоидоуглеводородные огнегасительные составы и сухие огнетушащие порошки.

Вода - наиболее распространенное и доступное средство тушения. Попадая в зону горения, она нагревается и испаряется, поглощая большое количество теплоты, что способствует охлаждению горючих веществ. При ее испарении образуется пар (из 1 л воды - более 1700 л пара), который ограничивает доступ воздуха к очагу горения. Воду применяют для тушения твердых горючих веществ и материалов, тяжелых нефтепродуктов, а также для создания водяных завес и охлаждения объектов, находящихся вблизи очага пожара. Тонкораспыленной водой можно тушить даже легковоспламеняющиеся жидкости. Для тушения плохо смачивающихся веществ (хлопок, торф) в нее вводят вещества, снижающие поверхностное натяжение.

Пена бывает двух видов: химическая и воздушно-механическая.

Химическая пена образуется при взаимодействии щелочного и кислотного растворов в присутствии пенообразователей.

Воздушно - механическая пена представляет собой смесь воздуха (90 %), воды (9,7 %) и пенообразователя (0,3 %). Растекаясь по поверхности горящей жидкости, она блокирует очаг, прекращая доступ кислорода воздуха. Пеной можно тушить и твердые горючие материалы.

Инертные и негорючие газы (диоксид углерода, азот, водяной пар) понижают концентрацию кислорода в очаге горения. Ими можно гасить любые очаги, включая электроустановки. Исключение составляет диоксид углерода, который нельзя применять для тушения щелочных металлов, поскольку при этом происходит реакция его восстановления.

Огнегасительные средства - водные растворы солей. Распространены растворы бикарбоната натрия, хлоридов кальция и аммония, глауберовой соли и др. Соли, выпадая в осадок из водного раствора, образуют изолирующие пленки на поверхности.

Галоидоуглеводородные огнегасительные средства позволяют тормозить реакции горения. К ним относятся: тетрафтордибромметан (хладон 114В2), бромистый метилен, трифторбромметан (хладон 13В1) и др. Эти составы имеют большую плотность, что повышает их эффективность, а низкие температуры замерзания позволяют использовать при низких температурах. Ими можно гасить любые очаги, включая электроустановки, находящиеся под напряжением.

Огнетушащие порошки представляют собой мелкодисперсные минеральные соли с различными добавками, препятствующими их слеживанию и комкованию. Их огнетушащая способность в несколько раз превышает способность галоидоуглеводородов. Они универсальны, так как подавляют горение металлов, которые нельзя тушить водой. В состав порошков входят: бикарбонат натрия, диаммонийфосфат, аммофос, силикагель и т. п.

Все виды пожарной техники подразделяются на следующие группы:

· пожарные машины (автомобили и мотопомпы);

· установки пожаротушения;

· огнетушители;

· средства пожарной сигнализации;

· пожарные спасательные устройства;

· пожарный ручной инструмент;

· пожарный инвентарь.

1Процесс горения требует наличия трех компонентов: вещества, способная гореть; источника огня с необходимым запасом энергии горения, определенного количества окислителяокислителя является кислород, в котором наиболее бурно происходят процессы горения окислителя могут быть кислородом вещества, такие как марганцовокислый калий КМn2О4 селитра КNО3, азотная кислота НМ03 и др.
2
Несмотря на большой опыт использования на практике, процессы горения остаются одними из наиболее сложных для научного изучения. Наука о горении является в высшей степени междисциплинарной, лежащей на стыке таких научных дисциплин, как газодинамика, химическая термодинамика, химическая кинетика, молекулярная и химическая физика, тепломассообмен, квантовая химия и физика, материаловедение и компьютерное моделирование
3
Прекращение горенияПрекращение горения любого вещества достигается путём физического или химического воздействия на реакцию горения, в результате чего происходит уменьшение количества выделяющегося тепла, снижение температуры горения и в конечном счете прекращение реакции.Прекращение горения достигается по нескольким механизмам. Исходя из этого различают следующие механизмы прекращения горения: разбавление концентраций реагирующих веществ; изоляция реагирующих веществ; охлаждение реагирующих веществ; химическое торможение реакции горения.
На практике, часто совмещают одновременно несколько методов прекращения горения. Прекращение горения путём разбавления концентрации реагирующих веществ основано на разбавлении воздуха или горючего вещества, поступающего в зону горения, негорючими веществами до тех пор, пока образующаяся в зоне реакции смесь станет негорючей. Условия прекращения горения в таком случае требуют, чтобы используемые для этой цели вещества были негорючими, низкотеплопроводными, обладать большой теплоемкостью и не поддерживать горения. К таким веществам относятся: азот, продукты сгорания, двуокись углерода, водяной пар.
Их можно вводить непосредственно в факел пламени, а также в объем помещения, где происходит горение. Прекращение горенияпутём изоляции реагирующих веществ. В этом случае горючее вещество или зону горения отделяют от воздуха. Огнетушащие средства: твердые листовые материалы (войлок, асбест, металлические крышки и др.), негорючие сыпучие материалы (песок, тальк и др.), жидкие вещества (химическую и воздушно-механическую пену, воду в чистом виде и с добавками, повышающими ее вязкость и смачивающую способность), газообразные вещества (продукты сгорания, азот, двуокись углерода).
Тушение методом охлаждения реагирующих веществ - до такого состояния, когда выделяющиеся пары не в состоянии будут воспламениться. Условия прекращения горения, которое осуществляется огнетушащими средствами, состоят в их высокой теплоёмкости, величиной удельной теплоты плавления и парообразования, способности равномерно распределяться на поверхности горящего вещества.

ГЛАВА 21. ГОРЕНИЕ И ВЗРЫВОПОЖАРООПАСНЫЕ СВОЙСТВА ВЕЩЕСТВ

Условия, необходимые для горения. Классификация видов горения

Мероприятия, при которых исключается возможность пожара и взрыва, в случае их возникновения предотвращается воздействие на людей опасных и вредных факторов пожара и взрыва и обеспечивается защита материальных ценностей, называют пожарной безопасностью.

Пожары и взрывы причиняют значительный материальный ущерб народному хозяйству и в ряде случаев вызывают тяжелые травмы, а иногда и гибель людей.

В Советском Союзе существует система государственных мер борьбы с огнем, которая осуществляется на стадии проектирования, строительства и эксплуатации зданий и сооружений.

В обычных условиях горение представляет собой процесс окисления (ли соединения горючего вещества и кислорода воздуха. Однако известно, что некоторые вещества, например сжатый ацетилен, хлористый азот, взрывчатые вещества, могут гореть, взрываться без кислорода с образованием тепла и пламени. Следовательно, горение может явиться результатом не только реакции соединения, но и разложения.

Горением называют быстро протекающую химическую реакцию, сопровождающуюся выделением большого количества тепла и обычно свечением. В зависимости от скорости процесса процесса горение может происходить в форме собственно гонения, взрыва и детонации.

Наибольшая скорость горения наблюдается в чистом кислороде,
наименьшая - при содержании в воздухе 14-15%(об.) кислорода,
При дальнейшем уменьшении содержания кислорода горение большей
части веществ прекращается. Оно происходит тем быстрее, чем больше
удельная поверхность веществ; при тщательном смешении горючего
вещества и кислорода (окислителя) увеличивается скорость горения.

Для возникновения и развития процесса горения обычно необходимы,
горючее, окислитель и источник загорания. Горение прекращается, если нарушить какое – либо из этих условий. Так при тушении горящего дере­ва водой происходит охлаждение его ниже температуры воспламенения, при тушении горючих жидкостей пенами прекращается поступление паров горючего в зону горения.

Химический состав горючего вещества и соотношение компонентов горючей смеси имеет важное значение для процесса горения.

Различают два вида горения- полное (при достаточном и избыточном количестве кислорода) и неполное (при недостатке кислорода). Горение может быть диффузионным и кинети­ческим.

Рис. 21.1. Диффузионное пламя:

a - распределение концентрации газов в пла­мени; 1 - горючий газ; 2 - продукты сгора­ния; 3- фронт (поверхность) пламени; б - схематический разрез пламени (4, 5, 6 - зоны диффузионного пламени)

Если кислород проникает в зону гонения вследствие диффузии, то обра­зующееся пламя называется диффузи­онным (рис. 21.1). В зоне 6 находятся газы или пары; горение в этой зоне не происходит (температура в ней не превышает 500°С). В зоне 5 пары или газы сгорают неполностью и частично восстанавливаются до углерода. В зоне 4 происходит полное сгорание продук­тов зоны 5 и наблюдается наиболее высокая температура пламени. Высота пламени обратно пропорциональна ко­эффициенту диффузии, который в свою очередь пропорционален температуре в степени от 0,5 до 1. Высота пламени возрастает с увеличением скорости по­тока газов и изменяется обратно про­порционально плотности газов и паров.

От диффузионного отличается пла­мя, образующееся при кинетическом

горении, т. е. заранее перемешанного горючего газа с воздухом. Это пламя при воспламенении какой-либо части объема горючей смеси пред­ставляет собой светящуюся зону, в которой соприкасаются друг с другом свежая смесь и продукты горения; зона горения всегда движется в сто­рону свежей горючей смеси, а фронт пламени имеет большей частью сферическую форму. При сгорании смеси горючих газов или паров с воздухом, подаваемых с определенной скоростью в зону горения, образуется стационарное пламя, имеющее форму конуса. Во внутрен­ней части конуса смесь подогревается до температуры воспламенения. В остальной части конуса происходит горение, характер которого за­висит от состава смеси. Если в смеси недостаточно кислорода, то во внешней части конуса происходит полное сгорание продуктов, образо­вавшихся при неполном горении во внутренней части конуса.

Таким образом, в пламени одновременно могут происходит процес­сы диффузионного горения и горения предварительно смешанных ком­понентов горючей смеси.

Следует различать также гомогенное и гетерогенное горение. Гомо­генным является горение газообразных веществ, гетерогенным - ве­ществ других агрегатных состояний. Гетерогенное горение является од­новременно и диффузионным.

Условия возникновения горения

Физической основой пожара является горение. По определению «горение - физико-химическое превращение, характеризующееся выделением тепла и света». Процесс горения может возникать как в реакциях соединения так и разложения. В общем случае для возникновения горения необходимо наличие горючего вещества, окислителя и источника воспламенения.

Окислителями в горении может быть кислород, находящийся в воздухе или в составе вещества, галогены, перекись водорода, азотная и серная кислоты, перманганат калия, хромовый ангидрид и другие соединения. Кроме того некоторые вещества горят в реакциях соединении, например, меди с серой, магния с углекислым газом. Группа веществ горит при взаимодействии с водой или ее парами. Сюда относятся щелочные, щелочноземельные металлы (калий, натрий и др.), гидриды, карбиды, фосфиды указанных металлов, низкомолекулярные металлоорганические соединения (триэтилбор, триэтилаллюминий) и другие.

Сгорание веществ может происходить также за счёт кислорода, находящегося в составе других веществ, способных его отдавать. Такими веществами являются азотная кислота , бертолетова соль , селитры , , , и др. Смеси этих окислителей с горючим веществом взаимодействуют с большой скоростью, часто со взрывом .

Источниками воспламенения являются – открытый огонь (пламя), искры (электрические, металла) и нагретые поверхности. Источник воспламенения должен иметь температуру выше температуры самовоспламенения горючей смеси и обладать энергией выше минимальной энергии зажигания. К обычным источникам относятся пламя спички (700 С), электрическая искра (1000 С), поверхность лампы накаливания (до 350 С).

Все вещества и материалы в зависимости от агрегатного состояния различают на:

газы-вещества, давление насыщенных паров которых при температуре 25 °С и давлении 101,3 жидкости-вещества, давление насыщенных паров которых при температуре 25°С и давлении 101,3 кПа меньше 101,3 кПа. К жидкостям относят также твердые плавящиеся вещества, температура плавления или каплепадения которых меньше 50 °С;

твердые вещества и материалы-индивидуальные вещества и их смесевые композиции с температурой плавления или каплепадения больше 50 °С, а также вещества, не имеющие температуру плавления (например, древесина, ткани и т. п.);

пыли-диспергированные твердые вещества и материалы с размером частиц менее 850 мкм.

Вид агрегатного состояния участвующих в горении веществ определяет механизм горения, который подразделяют на три типа:

Гомогенное горение газов и парообразных горючих в среде газообразного окислителя;

Гетерогенное горение твердых и жидких горючих веществ в среде газообразного окислителя;

Взрывчатое горение.

| следующая лекция ==>