Система с переменным числом частиц химический потенциал. Химический потенциал

При протекании многих процессов, например в ходе химических реакций, состав системы меняется. В этом случае энергии Гиббса и Гельмгольца являются функциями не только своих естественных переменных, но и числа молей реагентов, n i:

G=f(T,P,n 1 ,n 2 ....n i) (2.64)

F=f(T,V, n 1 ,n 2 ....n i) (2.65)

Возьмем полный дифференциал функции G:

Индекс n i в уравнении (2.66) указывает на постоянство числа молей всех компонентов, а - всех, кроме данного.

Aналогично можно выразить и функцию Гельмгольца.

Величина

есть парциальный молярный изобарный потенциал данного компонента.

При постоянных Р и Т G i имеет смысл химической энергии и называется химическим потенциалом компонента i (m i):

m i º = (2.68)

Химический потенциал - одна из важнейших термодинамических функций, широко применяемая при изучении состояний равновесия в различных термодинамических системах. Ее ввел Дж. Гиббс в 1887 г.

Физический смысл химического потенциала:

Химический потенциал компонента i равен приращению изобарного потенциала при добавлении одного моля этого компонента к большому объему системы при постоянных Р и Т. Понятие «большой объем» означает, что состав системы не меняется при добавлении 1 моля компонента.

Введем в уравнение (2.66) принятое обозначение (2.68) и запишем его при условии Р, Т=const:

dG P,T = m 1 dn 1 +m 2 dn 2 +....

или dG P,T = (2.69)

В состоянии равновесия dG P,T =0, тогда

Уравнение (2.70) есть общее условие равновесия в системе переменного состава. Мы будем пользоваться им при рассмотрении химических и фазовых равновесий.

Условием самопроизвольного протекания процесса является dG<0, следовательно

Неравенство (2.71) есть общее условие возможности самопроизвольного протекания процесса в системе переменного состава.

Химический потенциал можно выразить и через другие термодинамические функции (F, U, H) при постоянстве их естественных переменных (соответственно, V, T; S, V и S, P). Мы будем рассматривать далее преимущественно условия Р, Т -const как наиболее часто реализуемые в реальных системах.

Любые равновесные свойства веществ можно выражать через химический потенциал.

Получим выражение для химического потенциала 1 моля идеального газа. С учетом (2.53):

dm = dG = VdP – SdT (2.72)

При T = const dm = VdP (2.73)

Из уравнения состояния 1 моля идеального газа:

Подставив (2.74) в (2.73), получим:

Проинтегрируем уравнение (2.75) в пределах интегрирования от стандартного давления Р 0 до Р и, соответственно, от стандартного значения химического потенциала m 0 до его значения m при давлении Р:

m = m 0 + RTln(P/Р 0) (2.77)

Здесь m 0 - стандартный химический потенциал 1 моля идеального газа, то есть химический потенциал, соответствующий значению Р = Р 0 . Иначе стандартный химический потенциал можно определить как химический потенциал при относительном давлении (P/Р 0) равном единице. В физической химии стандартным давлением считается давление Р 0 = 1,013·10 5 Па. В этом случае, вычисляя относительное давление, следует Р выражать в тех же единицах. В то же время, за стандартное может быть принята величина Р 0 = 1атм. Тогда и давление Р при вычислении относительной величины должно быть выражено в атмосферах. Таким образом, под знаком логарифма всегда должна быть безразмерная величина. Далее будем обозначать относительные давления .

Уравнение (2.77) справедливо и для компонента i идеальной газовой смеси:

m i = m i 0 + RTln (2.78)

В этом случае - относительное парциальное давление компонента i в идеальной газовой смеси.

Общее давление в идеальной газовой смеси равно сумме парциальных давлений компонентов.

Аналогично можно получить для компонента идеального раствора:

m i =m i 0 + RTln (2.79)

Здесь - отношение концентрации (молярной доли) компонента i в растворе к стандартной концентрации, равной единице.

Тогда стандартный химический потенциал компонента i в растворе, m i 0 , соответствует относительной концентрации компонента i в растворе, равной единице.

Для вычисления химических потенциалов в реальных, то есть неидеальных газах и растворах, Г. Льюис предложил величины P i и N i заменять, соответственно, фугитивностью f i (fugacity - летучесть) и активностью а i . Выражая их относительными величинами, можно получить:

m i = m i 0 + RTln (2.80)

m i = m i 0 + RTln (2.81)

где , (2.82)

Стандартная фугитивность реального газа, которая считается равной стандартному давлению;

Стандартная активность, которую принимают равной единице.

Отношение фугитивности к давлению реального газа называется коэффициентом фугитивности:

Отношение активности компонента в растворе к его концентрации называется коэффициентом активности:

Коэффициенты фугитивности и активности – безразмерные величины. Они учитывают отклонение свойств реальных систем от идеальных в связи с наличием межмолекулярных взаимодействий в реальных системах. При низких давлениях и низких концентрациях межмолекулярные взаимодействия малы, и свойства реальных систем приближаются к свойствам идеальных, а коэффициенты g i ® 1 и f i ® P i ; a i ® N i .

Фугитивность и коэффициент фугитивности зависят от температуры, давления и состава газовой смеси. В зависимости от условий может быть как меньше единицы, так и больше. Как правило, межмолекулярные взаимодействия в реальных газах начинают сказываться при давлениях 50-100 атм и выше, при этом преобладают силы отталкивания и наблюдаются значительные отклонения от уравнения состояния идеальных газов. Вместо парциальных давлений тогда приходится пользоваться для практических расчётов величинами фугитивностей, при этом они могут значительно отличаться от парциальных давлений, и коэффициент фугитивности может быть много больше единицы.

Активности чистых индивидуальных веществ равны единице, поэтому химический потенциал 1 моля чистого твердого или жидкого вещества при Р,Т - const есть величина постоянная, равная стандартному потенциалу данного вещества m 0 .

При рассмотрении термодинамических свойств различных систем мы очень часто будем пользоваться выражениями для химических потенциалов.

Для термодинамических расчетов необходимы сведения о термодинамических свойствах веществ. Они публикуются во многих специальных статьях, монографиях, справочниках. Некоторые из них приведены в списке литературы.

Химический потенциал

Рассмотрим системы, в которых изменяются количества веществ. Эти изменения могут происходить в результате химических реакций или фазовых переходов. При этом изменяются значения термодинамических потенциалов U, Н, F, G системы.

Для характеристики способности веществ к химическим превращениям (или фазовым переходам) используется химический потенциал р. Водится он как частная производная термодинамических потенциалов по числу молей. В зависимости от условий осуществления процесса химический потенциал і-го компонента выражается через соответствующий термодинамический потенциал Gj, F t , Я, или Uj. Так, при постоянных температуре, давлении и количестве молей всех компонентов, кроме і-го, химический потенциал /-го компонента равен частной производной энергии Гиббса по числу молей г-го компонента:

Аналогичным же образом вводятся химические потенциалы при других условиях:

Изменение термодинамического потенциала (например, G) при изменении количества только /-го компонента равно

Обычно в системе при химических реакциях изменяется концентрация нескольких компонентов или идет изменение количества компонентов в нескольких фазах. Поэтому общее изменение термодинамического потенциала в системе dG равно

Для самопроизвольного процесса

Если в системе, в которой происходит химическая реакция

имеется только два компонента А и В, то для самопроизвольного процесса можно записать

Так как в данном случаето

В этом случае химический потенциал исходного вещества А больше, чем химический потенциал продукта В.

При равновесии должно соблюдаться соотношение

Рассмотренные в данном параграфе термодинамические потенциалы будут далее использованы для изучения физико-химических процессов в других разделах физической химии - фазовые и химические равновесия, химическая кинетика, коллоидные системы и др.

Примеры расчета свободной энергии

На примере двух конкретных процессов рассмотрим, как рассчитывается свободная энергия (энергия Гиббса) и на основании полученных результатов сделаем выводы о возможности и условиях протекания процессов.

Пример 4.1. Возможен ли при обычных (стандартных) условиях процесс восстановления оксида железа (III) водородом? Процесс протекает в соответствии с уравнением

Решение. Для ответа на вопрос задачи необходимо знать изменение изобарноизотермического потенциала при стандартных условиях для вышеприведенной реакции, т.е.

Для этого, как видно, нужно знать стандартное изменение энтальпии и энтропии в процессе. Из термодинамического справочника выписываем энтальпии образования и энтропии всех веществ, входящих в уравнение реакции, и сводим данные в табл. 4.3.

Рассчитаем изменение энтальпии и энтропии реакции при стандартных условиях в соответствии с законом Гесса.

Таблица 4.3

Термодинамические характеристики исходных веществ и продуктов реакции

Таким образом, изменение энтальпии в реакции при стандартных условиях составляет величину ΔНр еакции = 95,74 кДж/моль.

Изменение энтропии ΔSр еакц|1и также рассчитаем в соответствии с законом Гесса:

Изменение энтропии в реакции при стандартных условиях оказалось равным

При температуре 298 К изменение энергии Гиббса составит величину

Большая положительная величина ΔGр еакции = +54,48 кДж/ моль указывает на невозможность восстановления Fe 2 0 3 (кр) водородом до металлического железа при стандартных условиях.

Наоборот, противоположный процесс

характеризуется отрицательной величиной изменения энергии Гиббса

Из чего следует, что такая реакция возможна. Действительно, этот процесс самопроизвольно протекает, и результатом его является окисление (коррозия) железа, что мы и наблюдаем повседневно. А при каких условиях (при какой температуре) будет наблюдаться равновесие в данной системе? В равновесном состоянии изменение энергии Гиббса системы равно нулю, т.е.

При этой температуре обе реакции - восстановление и окисление железа - равновероятны, их скорости одинаковы. При расчете температуры равновесия предполагаем, что изменение энтальпии и энтропии не зависит от температуры, и используем их стандартные значения для 298 К. При температуре ниже 691 К железо самопроизвольно окисляется водяными парами до оксида железа с выделением водорода, а при температуре выше 691 К. наоборот, водород восстанавливает оксид железа до металлического.

Таким образом, используя основные понятия и термодинамические закономерности, мы оценили принципиальную возможность протекания как прямой, так и обратной реакции, а также и температуру равновесного состояния реакционной системы.

Пример 4.2. Возможен ли процесс испарения воды при стандартных условиях? Каково влияние температуры на этот процесс?

Решение. Для решения вопроса о возможности данного процесса нужно знать изменение энергии Гиббса при его протекании. Поэтому вначале составим термохимическое уравнение требуемого перехода:

Для расчета изменения энергии Гиббса этого перехода, равного

ΔS исп этого процесса.

Рассчитаем изменение энтальпии этого перехода при стандартных условиях:

и изменение энтропии в этом процессе при этих же условиях:

Подставляя табличные данные (см. приложение), получаем:

Зная эти величины, рассчитываем изменение энергии Гиббса при этом переходе для стандартных условий:

Полученная величина энергии Гиббса ΔG° mn = +8,6 кДж явно величина положительная (ΔG исп > 0), и, следовательно, процесс испарения воды при 25°С невозможен. Но наш повседневный опыт говорит об обратном: вода испаряется при комнатных условиях. В чем же дело?

Расчет нами проведен для стандартных условий, когда водяные пары имеют парциальное давление 101 325 На при температуре 25°С. В реальных же условиях парциальное давление водяных паров много меньше (всего 3647 Па) при этой температуре, что отвечает равновесному состоянию системы: "вода жидкая - пар". Если бы в реальных условиях парциальное давление водяных паров оказалось бы равным 101 325 Па, то, естественно, никакого самопроизвольного испарения жидкой воды в этих условиях не происходило бы (поэтому ΔG ncn > 0), а вот обратный процесс - конденсации водяного пара - наблюдался бы. Приведенный пример показывает, что нужно аккуратно обращаться с понятием "стандартные условия" и результатами термодинамических расчетов.

Рассчитаем, при какой температуре наступит равновесие между скоростью испарения и конденсации водяных паров, если их парциальное давление будет 101 325 Па. В состоянии равновесия изменение энергии Гиббса равно нулю

Значит, температура равновесного состояния Г |Х1НМ определяется выражением:

Значение 97,4°С близко температуре кипения воды, равной 100°С. Различие в 2.6°С обусловлено тем, что мы воспользовались стандартными значениями энтальпии и энтропии для 25°С и не учитывали их зависимость от температуры.

Превышение температуры системы над ее равновесным значением приведет к преобладанию скорости испарения воды по сравнению со скоростью конденсации, и тогда изменение энергии Гиббса окажется отрицательной величиной. А при понижении температуры системы относительно ее равновесного значения возобладает скорость конденсации водяных паров, и поэтому Δ G НСП будет положительной величиной.

Химический потенциал

Пусть однокомпонентная однофазная термодинамическая система является открытой, причём только вещество, составляющее эту систему, может проникать через оболочку. И пусть система является однородной и равновесной.

Очевидно, что изменение внутренней энергии такой системы будет происходить не только вследствие подвода теплоты и совершения над ней работы, но также и вследствие изменения её массы в силу того, что вещество, проникающее через оболочку, несёт с собой свою, присущую ему энергию. Тогда фундаментальные уравнения Гиббса для каждого из четырёх термодинамических потенциалов (5.3) и (5.5) следует дополнить ещё одним слагаемым, пропорциональным изменению массы системы, т.е.

Величина μ , определяемая, согласно свойствам полных дифференциалов, частными производными

носит название химического потенциала и имеет смысл изменения энергии термодинамической системы при изменении её массы на единицу при поддержании постоянной той или иной пары независимых термодинамических параметров системы.

Найдём связь химического потенциала с другими термодинамическими потенциалами системы. Для этого рассмотрим четвёртое из выражений (6.1). Свободную энергию Гиббса Φ, энтропию S и объём системы V запишем через их удельные величины:

Заменяя дифференциал свободной энергии Гиббса его выражением и перегруппировав слагаемые, получим

Но согласно (5.5) для M =const=1 кг , откуда, ввиду произвольности дифференциала массы dM , находим

т.е. химический потенциал вещества есть его удельная свободная энергия Гиббса. Для идеального газа, используя выражения для энтальпии (2.35) и энтропии (2.44), химический потенциал получим в виде

Рассмотрим однокомпонентную систему, состоящую из двух взаимодействующих фаз. Пусть каждая из фаз находится в своём внутреннем равновесии, т.е. каждая из них характеризуется своим набором интенсивных и экстенсивных параметров. Изучим вопрос о равновесии между фазами системы. Для этого заключим всю систему в изолирующую оболочку (рис.5.1). Тогда при малом изменении состояния каждой из фаз (подсистем) можно записать для них термодинамические тождества в соответствии с (6.1)

В силу аддитивности экстенсивных величин , замкнутости системы и обратимости процесса имеем

т.е. после почленного суммирования равенств (6.5) получаем

В силу произвольности дифференциалов множители в скобках при этих дифференциалах должны быть равны нулю, откуда получаем условия термодинамического равновесия двухфазной однокомпонентной системы:

Химический потенциал по определению сам является функцией "естественной" пары переменных , таким образом, условие равновесия фаз может быть записано в виде

Вид функций от T и p в общем случае различен для каждой из фаз, поэтому условие (6.7) не является тождеством. Это есть алгебраическое уравнение, связывающее температуру и давление в равновесной системе, состоящей из двух сосуществующих взаимодействующих фаз, между которыми имеет место обмен теплотой, работой и веществом.

Таким образом, в двухфазной однокомпонентной системе температура и давление однозначно связаны. Объём же системы может принимать произвольное значение в зависимости от соотношения между массами фаз.

Состояние равновесия двухфазной системы называется состоянием насыщения, а равные для фаз температура и давление - параметрами насыщения (s aturation ≡ н асыщение).

Рассмотрим аналогичным образом равновесие трёхфазной однокомпонентной системы . Имеем в данном случае:

Но для замкнутой системы

с учётом чего, складывая почленно (6.8), получаем

Так как все дифференциалы здесь независимы и значения их произвольны, находим условия равновесия:

Химическое равновесие, т.е. равенство химических потенциалов фаз, может быть записано в виде двух алгебраических уравнений

Это есть система двух уравнений с двумя неизвестными . Таким образом, равновесная однокомпонентная система может существовать одновременно в виде трёх фаз только при строго определённых значениях давления и температуры. Такое состояние системы называется тройной точкой .

Совершенно аналогично для равновесной четырёхфазной однокомпонентной системы получим

В этом случае мы получаем систему трёх уравнений с двумя неизвестными. Такая система уравнений является несовместной за исключением случая, когда любые два из них пропорциональны друг другу, т.е. когда две из четырёх фаз фактически неразличимы, а это уже будет трёхфазная система. Таким образом, в равновесной однокомпонентной системе возможно одновременное сосуществование не более чем трёх фаз. Если равновесная термодинамическая система является многокомпонентной, то число одновременно сосуществующих фаз может быть больше трёх, а именно

где n есть число компонентов системы. Этот результат носит название правила фаз Гиббса .

Известно, что все вещества, в зависимости от условий (давление и температура), могут находиться в трёх агрегатных состояниях: твёрдом, жидком и газообразном. Эти три различных агрегатных состояния ввиду резкого различия их свойств и наличия резкой границы раздела уже могли бы рассматриваться как фазы, однако понятие фазы является более общим, так как жидкое и особенно твёрдое состояния вещества характеризуются при определённых условиях различными физическими свойствами. Но для многих веществ в не очень больших пределах изменения внешних условий понятия агрегатного состояния и фазы совпадают. В дальнейшем под фазами мы будем понимать именно агрегатные состояния.

Если фазовый переход сопровождается выделением или поглощением энергии, то он называется фазовым переходом I рода в отличие от фазовых переходов II рода , которые не сопровождаются поглощением или выделением энергии, а связаны со скачкообразным изменением таких физических свойств как теплоёмкость, тепло- и электропроводность, вязкость и т.д. Примеры фазовых переходов II рода: переход в сверхтекучее или в сверхпроводящее состояние, переход ферромагнетик – парамагнетик и др.

Мы в дальнейшем будем рассматривать только фазовые переходы I рода, во время которых происходит изменение агрегатного состояния, а точнее, переход "жидкость - пар", который весьма часто имеет место в тепловых машинах. Обычно подразумевается, что фазовый переход происходит при постоянном давлении (а значит, и при постоянной температуре), хотя в общем случае это не является обязательным.



Рассмотрим процесс фазового перехода "жидкость – пар". Пусть в цилиндре под поршнем находится 1 кг химически чистой, т.е. без примесей и растворенных в ней газов, жидкости, например воды (рис.6.1). Если пренебречь изменением гидростатического давления в жидкости, вызванного действием силы тяжести, то давление в жидкости будет постоянной по высоте величиной, равной внешнему давлению p . Изобразим состояние жидкости в диаграммах точкой а (рис.6.2). Будем медленно (обратимо) подводить к жидкости теплоту через стенки цилиндра. Температура жидкости будет медленно возрастать, объём её также будет увеличиваться, но чрезвычайно мало ввиду малости коэффициента объёмного расширения жидкостей . Энтропия жидкости также будет возрастать.

Химический потенциал.

Частные производные термодинамических функций

Рассмотрим соотношение dG £ VdP-SdT

Можно выразить дифференциал функции через частные производные:

dG=(dG/dT) p dT+(dG/dP) T dP

Сравним два выражения и получим формулы, определяющие физический смысл частных производных:

(dG/dT) p =-S (dG/dP) T =V

Так как энтропия положительна, G всœегда падает с ростом Т, а так как объём положителœен, Всегда растет с ростом Р.

Аналогичные формулы можно получить для F:

(dF/dT) v =-S (dF/dV) T =-P

а также для U и H:

(dU/dS) v =T (dU/dV) S =-P

(dH/dS) p =T (dH/dP)=V

Функция принято называть характеристической, в случае если с помощью этой функйции и ее частных производных можно выразить всœе термодинамические функции системы в данном состоянии. Т.о., U,H,G,F являются характеристическими. Подставим в определœение G вместо S ее частную производную:

Это уравнение Гиббса-Гельмгольца. Его можно записать для процесса:

DG= DH+T(dDG/dT) p

В случае если знать зависимость DG от температуры, можно рассчитать тепловой эффект реакции, а -DG дает максимальную полезную работу реакции. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, установлена связь между полезной работой и тепловым эффектом реакции. Для изохорно-изотермических процессов уравнение Гиббса-Гельмгольца записывается в виде:

DF= DU+T(dDF/dT) v

Энергия Гиббса и другие характеристические функции зависят от состава системы:

dG= VdP-SdT+(dG/dn 1) T,P,nj +(dG/dn 2) T,P,nj +...

где n j - число молей других компонентов системы. Частная производная энергии Гиббса по числу молей компонента при постоянных T,P и числа молей остальных компонентов n j принято называть химическим потенциалом компонента:

m i =(dG/dT) T,P,nj .

Можно сказать, что химический потенциал равен приращению энергии Гиббса при прибавлении одного моля компонента к такому большому количеству смеси, что ее состав почти не изменится.

При Р,Т=const dG=S m i dn i

В случае если в системе не происходят реакции, то можно интегрировать:

В случае чистого вещества G=n m ,

то-есть химический потенциал чистого вещества равен энергии Гиббса одного моля этого вещества. Рассмотрим зависимость химического потенциала идеального газа от давления. Уравнение Клапейрона-Менделœеева для идеального газа:

Ранее нашли, что dG/dP=V, в связи с этим dG=VdP=nRTdP/P

Интегрируем:

G=G 0 +nRTln(P/P 0)

где Р 0 - стандартное давление Для одного моля:

m=m 0 +RTln(P/P 0)

Важно заметить, что для смеси идеальных газов:

m i =m 0 i +RTlnP i ,

где P i - парциальное давление компонента смеси, равное:

Р i =Pn i / Sn i

Р- общее давление (всœе давления относительно стандартного).

Зачем нужен химический потенциал? Он позволяет рассчитывать химические и фазовые равновесия. Рассмотрим двухфазную систему при постоянных Р и Т. Пусть dn молей одного вещества переходит из фазы а в фазу б. Тогда изменение dG = dn(m a -m b).

Химический потенциал. - понятие и виды. Классификация и особенности категории "Химический потенциал." 2017, 2018.

  • - Химический потенциал.

    В системах. Направление процессов открытых многокомпонентных Выведенное уравнение для закрытых систем: &... .


  • - Химический потенциал

    Термодинамика фазовых переходов. Определения Рассмотрим термодинамику систем, в которых могут иметь место фазовые переходы. Термодинамическая система, которая может обмениваться веществом с окружающей средой, называется открытой. - Термодинамическая... .


  • - Химический потенциал- это энергия Гиббса, приходящаяся на 1 моль вещества в данной системе

    ; Химический потенциал не дается в справочных таблицах. Он служит для доказательств. Химический потенциал вещества в растворе зависит от концентрации: m(Х) = m°(Х) + RTlnc(X) Это уравнение эвристическое, предложенное логическим путем для идеальных растворов. С ним... .


  • - Химический потенциал компонента идеальных растворов.

    Если общее давление газовой смеси невелико, то каждый газ будет оказывать свое собственное давление, причем такое, как если бы он один занимал весь объем. Это давление называется парциальным. Полное наблюдаемое давление р равно сумме парциальных давлений каждого газа... .


  • - Химический потенциал индивидуального идеального газа.

    Рассмотрим термодинамическую систему, представляющую собой идеальный газ. Химический потенциал идеального газа равен: , где – мольная энергия Гиббса (изобарный потенциал 1 моль идеального газа). Так как, то, где – мольный объем идеального газа (объем 1 моль газа). ... .


  • - Химический потенциал

    Свободная энергия системы (энергия Гиббса G и энергия Гельмгольца F) зависит от внешних условий: Эта зависимость является полной для простейших систем, состоящих из одного компонента. Термодинамическая система может состоять как из одного, так и из нескольких...

    Частные производные от экстенсивных свойств по n при постоянных Р. Т, V, n называются парциальными величинами. В зависимости от единиц, в которых выражается масса компонента, различают мольные и удельные парциальные величины. Таким образом, &... .


  • Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
    Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, "мысленный эксперимент" фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей "мысленных экспериментов" является обман слушателя или читателя путем замены настоящего физического эксперимента его "куклой" - фиктивными рассуждениями под честное слово без самой физической проверки.
    Заполнение физики воображаемыми, "мысленными экспериментами" привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие "фантики" от настоящих ценностей.

    Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

    Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").

    Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

    Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.