Понятия модели и моделирования. Что такое модель в информатике? Виды, примеры

Модель I Мо́дель (Model)

Вальтер (24.1.1891, Гентин, Восточная Пруссия, - 21.4.1945, близ Дуйсбурга), немецко-фашистский генерал-фельдмаршал (1944). В армии с 1909, участвовал в 1-й мировой войне 1914-18. С ноября 1940 командовал 3-й танковой дивизией, с которой участвовал в нападении фашистской Германии на СССР. С октября 1941 командир 41-го танкового корпуса, с января 1942 по ноябрь 1943 (с перерывами) командующий 9-й армией на Восточном фронте. В феврале - марте 1944 командовал группой армий «Север», в апреле - июне 1944 - группой армий «Северная Украина», в июне - августе 1944 - группой армий «Центр». Считался «мастером отступления», проводил тактику «выжженной земли», отличался особой жестокостью. В августе - сентябре 1944 командующий войсками Запада, а с сентября 1944 - группой армий «Б» (во Франции). В апреле 1945 войска М. были разгромлены в ходе Рурской операции 1945 (См. Рурская операция 1945) и 18 апреля капитулировали, после чего М. застрелился.

II Моде́ль (франц. modèle, итал. modello, от лат. modulus - мера, мерило, образец, норма)

1) образец, служащий эталоном (стандартом) для серийного ли массового воспроизведения (М. автомобиля, М. одежды и т. п.), а также тип, марка какого-либо изделия, конструкции.

Моделизм) целях.

Модель (в широком понимании) - образ (в т. ч. условный или мысленный - изображение, описание, схема, чертёж, график, план, карта и т. п.) или прообраз (образец) какого-либо объекта или системы объектов («оригинала» данной М.), используемый при определённых условиях в качестве их «заместителя» или «представителя». Так, М. Земли служит глобус, а М. различных частей Вселенной (точнее - звёздного неба) - экран планетария. В этом же смысле можно сказать, что чучело животного есть М. этого животного, а фотография на паспорте (или список примет и вообще любой перечень паспортных или анкетных данных) - М. владельца паспорта (хотя живописец, напротив, называет М. именно изображаемого им человека). В математике и логике М. какой-либо системы аксиом обычно называют совокупность объектов, свойства которых и отношения между которыми удовлетворяют данным Аксиома м, в терминах которых эти объекты описываются.

Все эти примеры естественно делятся на 2 основные группы: примеры первой группы выражают идею «имитации» (описания) чего-то «сущего» (некоей действительности, «натуры», первичной по отношению к М.); в остальных примерах, напротив, проявляется принцип «реального воплощения», реализации некоторой умозрительной концепции (и здесь первичным понятием выступает уже сама М.). Иными словами, М. может быть системой и более высокого уровня абстракции, чем её «оригинал» (как в первом случае), и более низкого (как во втором). При различных же уточнениях понятия «М.» средствами математики и логики в качестве М. и «оригиналов» выступают системы абстрактных объектов, для которых вообще, как правило, не имеет смысла ставить вопрос об относительном «старшинстве». (Более подробно о возможных классификациях М., исходящих, в частности, из характера средств построения М., см. в ст. Моделирование .)

В естественных науках (например, в физике, химии) следуют обычно первому из упомянутых пониманий термина, называя М. какой-либо системы её описание на языке некоторой научной теории (например, химическую или математическую формулу, уравнение или систему уравнений, фрагмент теории или даже всю теорию в целом). В таком же смысле говорят и о «моделях языка» (см. Модели в языкознании), хотя в настоящее время всё чаще следуют второму пониманию, называя М. некоторую языковую реальность, противопоставляя эту реальность её описанию - лингвистической теории. Впрочем, оба понимания могут и сосуществовать; например, релейно-контактные схемы используют в качестве «экспериментальных» М. формул (функций) алгебры логики (См. Алгебра логики), последние же, в свою очередь, - как «теоретические» М. первых.

Такая многозначность термина становится понятной, если учесть, что М. в конкретных науках так или иначе связываются с применением моделирования, т. е. с выяснением (или воспроизведением) свойств какого-либо объекта, процесса или явления с помощью другого объекта, процесса или явления - его «М.» (типичные примеры: «планетарная» М. атома и концепция «электронного газа», апеллирующие к более наглядным - точнее, более привычным - механическим представлениям). Поэтому первое естественно возникающее требование к М. - это полное тождество строения М. и «оригинала». Требование это реализуется, как известно, в условии Изоморфизм а М. и «моделируемого» объекта относительно интересующих исследователя их свойств: две системы объектов (в интересующем нас сейчас случае - М. и «оригинал») с определёнными на них наборами предикатов, т. е. свойств и отношений (см. Логика предикатов) называемых изоморфными, если между ними установлено такое взаимно-однозначное соответствие (т. е. каждый элемент любой из них имеет единственного «напарника» из числа элементов другой системы), что соответствующие друг другу объекты обладают соответствующими свойствами и находятся (внутри каждой системы) в соответствующих отношениях между собой. Однако выполнение этого условия может оказаться затруднительным или ненужным, да и вообще настаивать на нём неразумно, поскольку никакого упрощения исследовательской задачи, являющейся важнейшим стимулом для моделирования, использование одних лишь изоморфных М. не даёт. Т. о., на следующем уровне мы приходим к представлению о М. как об упрощённом образе моделируемого объекта, т. е. к требованию Гомоморфизм а М. «оригиналу». (Гомоморфизм, как и изоморфизм, «сохраняет» все определённые на исходной системе свойства и отношения, но, в отличие от изоморфизма, это отображение, вообще говоря, однозначно лишь в одну сторону: образы некоторых элементов «оригинала» в М. оказываются «склеенными» - подобно тому, как на сетчатке глаза или на фотографии сливаются в одно пятно изображения близких между собой участков изображаемого предмета.) Но и такое понимание термина «М.» не является окончательным и бесспорным: если мы преследуем цель упрощения изучаемого объекта при моделировании в каких-либо определённых отношениях, то нет никакого резона требовать, чтобы М. была во всех отношениях проще «оригинала» - наоборот, имеет смысл пользоваться любым, сколь угодно сложным арсеналом средств построения М., лишь бы они облегчали решение проблем, ставящихся в данном конкретном случае. Поэтому к максимально общему определению понятия «М.» можно прийти, допуская сколь угодно сложные М. и «оригиналы» и требуя при этом лишь тождества структуры некоторых «упрощённых вариантов» каждой из этих систем. Иными словами, две системы объектов А и В мы будем теперь называть М. друг друга (или моделирующими одна другую), если некоторый гомоморфный образ А и некоторый гомоморфный образ В изоморфны между собой. Согласно этому определению, отношение «быть М.» обладает свойствами рефлексивности (См. Рефлексивность) (т. е. любая система есть своя собственная М.), симметричности (См. Симметричность) (любая система есть М. каждой своей М., т. е. «оригинал» и М. могут меняться «ролями») и транзитивности (См. Транзитивность) (т. е. модель модели есть М. исходной системы). Т. о., «моделирование» (в смысле последнего из наших определений понятия «М.») является отношением типа равенства (См. Равенство) (тождества (См. Тождество), эквивалентности (См. Эквивалентность)), выражающим «одинаковость» данных систем (относительно тех их свойств, которые сохраняются при данных гомоморфизмах и изоморфизме). То же, конечно, относится и к первоначальному определению М. как изоморфного образа «оригинала», в то время как отношение гомоморфизма (лежащее в основе второго из данных выше определений) транзитивно и антисимметрично (М. и «оригинал» не равноправны!), порождая тем самым иерархию М. (начиная с «оригинала») по понижающейся степени сложности.

М., применяемые в современных научных исследованиях, впервые были в явном виде использованы в математике для доказательства непротиворечивости геометрии Лобачевского относительно геометрии Евклида (см. Неевклидовы геометрии , Аксиоматический метод). Развитый в этих доказательствах т. н. метод интерпретации получил затем особенно широкое применение в аксиоматической теории множеств. На стыке алгебры и математической логики сформировалась специальная дисциплина - Моделей теория , в рамках которой под М. (или «алгебраической системой») понимается произвольное множество с заданными на нём наборами предикатов и (или) операций - независимо от того, удаётся ли такую М. описать аксиоматическими средствами (нахождение таких описаний и является одной из основных задач теории М.). Дальнейшую детализацию такое понятие М. получило в рамках логической семантики (См. Логическая семантика). В результате логико-алгебраического и семантического уточнений понятия «М.» выяснилось также, что его целесообразно вводить независимо от понятия изоморфизма (поскольку аксиоматические теории допускают, вообще говоря, и не изоморфные между собой М.).

В соответствии с различными назначениями методов моделирования понятие «М.» используется не только и не столько с целью получения объяснений различных явлений, сколько для предсказания интересующих исследователя явлений. Оба эти аспекта использования М. оказываются особенно плодотворными при отказе от полной формализации этого понятия. «Объяснительная» функция М. проявляется при использовании их в педагогических целях, «предсказательная» - в эвристических (при «нащупывании» новых идей, получении «выводов по аналогии» и т. п.). При всём разнообразии этих аспектов их объединяет представление о М. прежде всего как орудии познания, т. е. как об одной из важнейших философских категорий. Для использования этого понятия во всех разнообразных аспектах на современном этапе развития науки характерно значительное расширение арсенала применяемых М. Введение в число параметров, описывающих изменяющиеся (развивающиеся) системы временных характеристик (или использование функций в математическом смысле этого слова в качестве первичных элементов М.), позволяет расширить понятие изоморфизма до т. н. изофункционализма и с его помощью отображать (моделировать) не только «жестко заданные», неизменные системы, но и различные процессы (физические, химические, производственные, экономические, социальные, биологические и др.). Это открывает широкие возможности использования в качестве М. программ для цифровых ЭВМ, «языки» которых можно рассматривать как «универсальные моделирующие системы». То же, конечно, относится и к обычным (естественным) языкам, причём и по отношению к языковым М. претензии на их непременный изоморфизм описываемым ситуациям оказываются несостоятельными и ненужными. К тому же предварительный учёт всех подлежащих «моделированию» параметров, нужный для буквального понимания термина «М.» введённого каким-либо точным определением, часто невозможен (что и обусловливает, кстати, потребность в моделировании), в силу чего особенно плодотворным опять-таки оказывается расширительное понимание термина «М.», основывающееся на интуитивных представлениях о «моделировании». Это относится ко всякого рода «вероятностным» М. обучения (см. также Программированное обучение), «М. поведения» в психологии, к типичным для кибернетики М. самоорганизующихся (самонастраивающихся) систем. Требование непременной формализации как предпосылки построения М. лишь сковывало бы возможности научных исследований. Весьма перспективным путём преодоления возникающих здесь трудностей представляется также введение различных ослаблений в формальные определения понятия «М.», в результате чего возникают «приближённые», «размытые» понятия «квазимодели», «почти М.» и т. п. При этом для всех модификаций понятия «М.» на всех уровнях его абстракции оно используется в обоих упомянутых выше смыслах, причём зачастую одновременно. Например, «запись» генетической информации (См. Генетическая информация) в хромосомах моделирует родительские организмы и в то же время моделируется в организме потомка.

Лит.: Клини С. К., Введение в метаматематику, пер. с англ., М., 1957, § 15; Эшби У. Р., Введение в кибернетику, пер. с англ., М., 1959, гл. 6; Лахути Д. Г., Ревзин И. И., Финн В. К., Об одном подходе к семантике, «Философские науки», 1959, № 1; Моделирование в биологии. [Сб. ст.], пер. с англ., М., 1963; Бир С., Кибернетика и управление производством, пер. с англ., М., 1963; Чжао Юань-жень, Модели в лингвистике и модели вообще, в сборнике: Математическая логика и её применения, пер. с англ., М., 1965, с. 281-92; Миллер Дж., Галантер Ю., Прибрам К., Планы и структура поведения, пер. с англ., М., 1965; Гастев Ю. А., О гносеологических аспектах моделирования, в сборнике: Логика и методология науки, М., 1967, с. 211-18; Карри Х. Б., Основания математической логики, пер. с англ., М., 1969, гл. 2 и 7; Хомский Н., Язык и мышление, пер. с англ., М., 1972; Carnap R., The logical syntax of language, L., 1937; Кemeny J. G., A new approach to semantics, «Journal of Symbolic Logic», 1956, v. 21, № 1-2; Gastev Yu. A., The role of the isomorphism and homomorphism conceptions in methodology of deductive and empirical sciences, в сборнике: Abstracts. IV International congress for logic, methodology and philosophy of science, Buc., , p. 137-38.

Ю. А. Гастев.

III (франц. modе́le, итал. modello, от лат. modulus - мера, мерило, образец, норма)

1) образец, служащий эталоном (стандартом) для серийного или массового воспроизведения (М. автомобиля, М. одежды и т. п.), а также тип, марка какого-либо изделия, конструкции.

3) Человек, позирующий художнику (натурщик), и вообще изображаемые объекты («натура»).

4) Устройство, воспроизводящее, имитирующее (обычно в уменьшенном, «игрушечном» масштабе) строение и действие какого-либо другого устройства («настоящего») в научных (см. ниже), практических (например, в производственных испытаниях) или спортивных (см. Моделизм) целях.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Модель" в других словарях:

    модель - и, ж. modèle m., ит. modello, нем. Model, пол. model. 1. Образец, с которого снимается форма для отливки или воспроизведения в другом материале. БАС 1. Точить модель посуды, наводить резьбы, делать формы 15. 11. 1717. Контракт с Антонио Бонавери … Исторический словарь галлицизмов русского языка

    - (модель совокупного спроса и совокупного предложения) макроэкономическая модель, рассматривающая макроэкономическое равновесие в условиях изменяющихся цен в краткосрочном и долгосрочном периодах … Википедия

от лат. modulus – мера, образец, норма) – любое сущее по отношению к любому другому сущему, имеющее общую с ним структуру и функции, независимо от различий по составу (содержанию), внешней форме, количеству (например, размеру).

Отличное определение

Неполное определение ↓

МОДЕЛЬ

франц. mod?le, от лат. modus -образец) - условный образ (изображение, схема, описание и т.п.) к.-л. объекта (или системы объектов). Служит для выражения отношения между человеч. знаниями об объектах и этими объектами; понятие М. широко применяется в семантике, логике, математике, физике, химии, кибернетике, лингвистике и др. науках и их (гл. обр. технич.) приложениях в различных, хотя и тесно связанных между собой, смыслах. Эти различные понимания могут быть извлечены из след. общего определения. Две системы объектов А и В наз. М. друг друга (или моделирующими одна другую), если можно установить такое гомоморфное отображение системы А на нек-рую систему А? и гомоморфное отображение В на нек-рую систему В?, что А?иВ? между собой изоморфны (см. Изоморфизм; данные в этой статье определения следует обобщить, рассматривая отношения не только между элементами, но и - в случае надобности - между подмножествами систем). Определенное т.о. отношение "быть M." есть рефлексивное, симметричное и транзитивное отношение, т.е. отношение типа эквивалентности (равенства, тождества); ему, в частности (при А=А? и В=В), удовлетворяют любые изоморфные друг другу системы. Понятие М. в науке обычно связывают с применением т.н. метода моделирования (см. Моделирование). В силу вытекающей из определения М. симметричности отношения между к.-л. объектом (системой) и его М. любую из попарно изоморфных систем мы в принципе с равным основанием можем называть М. другой. Напр., в живописи и скульптуре М. наз. изображаемый объект; сравнивая же между собой к.-л. предмет и его фотографию, мы считаем М. именно фотографию. Какая из двух моделирующих друг друга систем (в смысле данного выше определения) при естеств.-науч. моделировании будет выбрана в качестве объекта исследования, а какая в качестве его М., зависит от встающих перед исследователем конкретных познавательно-практич. задач. Вследствие этого обстоятельства, отраженного и в самой грамматич. структуре термина "моделирование", последний имеет нек-рую субъективную окраску (будучи часто связан с тем, к т о "моделирует"). Термин же "М.", лишенный этой окраски, естественнее понимать (а следовательно, и определять) независимо от различных возможных "моделирований". Иначе говоря, если понятие моделирования характеризует выбор средств исследования к.-л. системы, то понятие М. – отношение между существующими (в том или ином смысле) конкретными и (или) абстрактными системами. Отношение между М. и моделируемой системой зависит от совокупности тех свойств и отношений между объектами рассматриваемых систем, относительно к-рых определяется их изоморфизм и гомоморфизм. Хотя данное выше определение М. настолько широко, что при желании (рассматривая "тривиальный" гомоморфизм каждой системы на множество, состоящее из одного единств. элемента) можно любые две системы счесть М. одна другой, такая широта понятия М. никоим образом не затрудняет применения принципа моделирования в науч. исследовании, поскольку интересующие нас свойства и отношения в принципе всегда могут быть фиксированы. Т.о., понятия М. и моделирования, как и понятия изоморфизма и гомоморфизма, всегда определяются относительно нек-рой совокуп-н о с т и п р е д и к а т о в (свойств, отношений). Хотя отношение "быть М." симметрично и моделирующие друг друга системы, согласно определению, совершенно равноправны, при употреблении термина "М." почти всегда все же предполагается (часто неявно) нек-рое "моделирование" [напр., моделирование, применяемое в теоретических исследованиях для построения моделей средствами математич. и логич. символики (т.н. абстрактно-логич. моделирование), или моделирование, заключающееся в воспроизведении изучаемых явлений на специально сконструированных М. в эмпирич. науках (э к с п е р и м е н т а л ь н о е моделирование) ]. В зависимости от того, какая из двух сравниваемых систем фиксируется как предмет изучения, а какая в качестве ее М., термин "М." понимается в двух различных смыслах. В теоретич. науках (особенно в математике, физике) М. к.-л. системы обычно наз. др. систему, служащую описанием исходной системы на языке данной науки; напр., систему дифференц. ур-ний, описывающих протекание во времени к.-л. физич. процесса, наз. М. этого процесса. Вообще, М. – в этом смысле – к.-л. области явлений наз. науч. теорию, предназначенную для изучения явлений из этой области. Аналогично, в (математической) логике М. к.-л. содержат. теории часто наз. формальную систему (исчисление), и н т е р п р е т а ц и е й к-рой является эта теория. [Содержательность, о к-рой здесь идет речь, конечно, относительна; так, интерпретацией к.-л. формальной системы может быть и др. формальная система – см. Интерпретация; с др. стороны, и М. – в этом понимании – вовсе не обязательно должна быть полностью формализована (составляющие ее объекты могут сами рассматриваться с содержат. т.зр., как имеющие определ. смысл); существенным является лишь то, что понятия (термины) "М." истолковываются в терминах и н т е р п р е т а ц и и. ] Такой же характер имеет употребление термина "М." в лингвистике ("модели языка", играющие важную роль как в теоретико-лингвистич. исследованиях, так и в задачах, связанных с построением информационных языков, с разработкой машинного перевода и др.; см. Лингвистика математическая), теоретич. физике (напр., "модели ядра") и вообще во всех тех случаях, когда слово "М." служит синонимом для понятий "теория" и "научное описание". Не менее распространенным является такое употребление термина "М.", когда под М. понимается не описание, а то, что о п и с ы в а е т с я. При таком употреблении (опять-таки в математич. логике, в аксиоматич. построениях математики, в семантике и др.) термин "М." рассматривается как синоним термина "интерпретация", т.е. М. к.-л. системы соотношений наз. совокупность объектов, удовлетворяющих этой системе. Точнее говоря, синонимами при таком употреблении являются выражения "построить М." и "указать интерпретацию"; иначе говоря, интерпретацией к.-л. системы объектов обычно называют не саму ее M. (т. е. нек-рую др. с и с т е м у), а перечень т.н. с е м а н т и ч е с к и х п р а в и л "перевода" с "языка" моделируемой системы (напр., науч. теории) на "язык" М. Так, интерпретациями геометрии Лобачевского фактически послужили не сами по себе М., предложенные Пуанкаре, итал. ученым Э. Бельтрами и нем. ученым Ф. Клейном, а именно истолкования понятий геометрии Лобачевского в терминах этих М. Впрочем, с содержат. т.зр. выделение к.-л. М. теории в качестве ее интерпретации равносильно указанию семантич. правил, согласно к-рым элементы одной из М. теории рассматриваются в качестве интерпретации ее объектов. В тех же случаях, когда основным являются не содержательный, а строго формальный аспект понятий М. и интерпретации (в частности, в логич. семантике), эти понятия могут быть уточнены, напр., след. образом: Пусть А есть формула нек-рого исчисления (формальной системы) L. Результат замены всех входящих в А нелогич. констант (если таковые имеются) переменными соответств. типов (см. Типов теория, Предикатов исчисление) обозначим через А?. Класс предметов N, выполняющих формулу А? (класс предметов, по определению, выполняет данную формулу, если при такой подстановке имен этих предметов на места всех входящих в нее переменных, что имя одного и того же предмета подставляется на место различных вхождений одной и той же переменной, формула переходит в истинную формулу), - при соблюдении требования, чтобы тип каждого предмета был равен типу переменной, на место к-рой он подставляется, -наз. М. формулы А (или -?. предложения, выражаемого этой формулой). Аналогично, если дан класс формул К, то система S классов предметов, элементам каждого из к-рых приписан определ. тип, одновременно выполняющих - при соблюдении вышеуказ. условий - все формулы класса К? (получающегося из К так же, как А? из А), наз. М. этого класса формул [имея в виду это понятие М., нек-рые авторы для М. отдельной формулы (предложения) - или, аналогично, отдельного терма (понятия) - употребляют термин "полумодель" ]. Модель S считается М. всего исчисления L, если: 1) все аксиомы исчисления L входят в К (и, следовательно, выполняются системой S); 2) каждая формула из L, выводимая по правилам вывода исчисления L из выполнимых в S формул исчисления L, также выполняется системой S. На основе этого определения легко определяются важнейшие семантич. понятия: "аналитическое" и "синтетическое" (предложения), "экстенсиональное" и "интенсиональное" (выражения) и вообще "семантич. отношение". В такой терминологии легко может быть охарактеризовано отношение логического следования: предложение А следует из предложения В, если и только если А выполняется всеми М., к-рыми выполняется В. У формальной системы может быть, вообще говоря, много различных М., как изоморфных между собой, так и не изоморфных. Если все М. к.-л. формальной системы изоморфны, то говорят, что лежащая в ее основе система аксиом к а т е г о р и ч н а (см. Категоричность системы аксиом), или п о л н а (в одном из значений этого термина; см. Полнота); в противном случае система наз. н е п о л н о й. (Для произвольной системы аксиом a priori возможен, конечно, и третий случай – отсутствие какой бы то ни было М. Тогда система наз. п р о т и в о р е ч и в о й, или – в соответствии с введенной выше терминологией – н е в ы п о л н и м о й. Обратно, указание М. к.-л. аксиоматич. системы служит доказательством ее непротиворечивости относительно системы, средствами к-рой построена М. – см. также Интерпретация, Метод аксиоматический). В любом из этих случаев одна из М. системы – т.н. выделенная (подразумеваемая при построении системы или рассматриваемая для к.-л. целей) – наз. и н т е р п р е т а ц и е й системы (если же интерпретацию отождествляют с М. – в последнем из употребленных здесь смыслов – то подразумеваемую интерпретацию наз. е с т е с т в е н н о й). Образно говоря, М. мы называем любой возможный "перевод" с языка моделируемой системы на любой др. язык, а интерпретацией – лишь тот из этих переводов (и на тот именно язык), к-рый мы имеем в виду при истолковании понятий системы, считая его (по к.-л. соображениям) единственно верным. Напр., конец англ. фразы "In this way we can obtain only a 50 per cent solution" может быть переведен и как "только 50-процентный раствор" и как "лишь половинное решение", причем легко представить себе конкретный текст, при переводе к-рого потребуются дополнительные (не содержащиеся в нем самом) указания на то, какую из этих "М." выбрать в качестве "интерпретации". Как известно, фигурирующее в только что приведенном определении понятий М. и интерпретации понятие выполнимости определяется (хотя и не обязательно явным образом) через понятие логической истинности, к-рое в таком случае принимается за первоначальное. С др. стороны, понятие истины в формализованных языках может быть в свою очередь определено через понятие выполнимости. Т.о., "содержательность" понятий M. и интерпретации носит относит. характер – эти понятия определяются в терминах (логической) "истинности", оказывающейся если не "формальным", то во всяком случае формализуемым понятием. Это обстоятельство оправдывает распространенную в математике и логике т.зр., согласно к-рой в с я к а я интерпретация "формальна" (а всякое изучение любой системы объектов есть изучение нек-рой ее М.) в том смысле, что служащая для целей интерпретации М. к.-л. системы должна быть описана в точных терминах (т.к. в противном случае не имеет смысла даже ставить вопрос об ее изоморфизме с какой бы то ни было др. системой); более того, именно само это описание можно рассматривать в этом случае в качестве М. Конечно, этим не снимается важнейший гносеологич. вопрос об адекватности М. – напр., эмпирич. описания – описываемой ею совокупности объектов реального мира, но критерии этой адекватности носят уже существенно внелогич. характер. Свойства моделей-интерпретаций в математике являются предметом изучения спец. алгебраич. "теории M.", где используется понятие "реляционной системы, т.е. множества, на к-ром определена нек-рая совокупность предикатов (свойств, операций, отношений) (ср. определения в ст. Изоморфизм). Следует иметь в виду, что природа математич. М. бывает очень сложной и даже "парадоксальной" (т. е. не соответствующей укоренившимся представлениям, из чего, однако, не следует их логич. противоречивость). Примером могут служить т.н. "нестандартные" М. аксиоматич. систем, характеризующиеся тем, что "исходный" натуральный ряд чисел (используемый в теории, средствами к-рой строится М.) оказывается неизоморфным натуральному ряду, построенному в М. (здесь речь идет об обычной, традиционной математике, исходящей, в отличие от т.н. ультра-интуиционистской, из предположения об однозначной – с точностью до изоморфизма – определенности множества натуральных чисел); отношение "быть М." трактуется при этом, конечно, как существенно несимметричное. Для совр. этапа развития науки характерно интенсивное расширение запаса применяемых в науч. исследовании способов построения и использования различных М. Особенно плодотворным в этом отношении оказался "кибернетич." подход к исследованию систем различной природы. Применяемые в наст. время науч. М. способствуют изучению не только структуры, но и ф у н к ц и о н и р о в а н и я весьма сложных систем (в т.ч. объектов живой природы). Расширение понятия моделирования (и М.), предполагающее учет не только структурных, но и функциональных свойств и отношений, может быть достигнуто по меньшей мере двумя (родственными) путями. Во-первых, можно потребовать, чтобы описание каждого элемента М. (и, конечно, моделируемой системы) включало в себя временную характеристику (как это, напр., принято в нек-рых разделах теоретич. физики – см. Континуум, Относительности теория); этот путь по существу означает, что введение параметра времени свело бы понятие функционирования к общему понятию "пространственно-временн?й структуры". Во-вторых, пользуясь точным математич. понятием функции (в логич. генезис к-рого, как известно, понятие "временн?й переменной" не входит), можно с самого начала считать элементами, из к-рых строится М., именно функции, описывающие изменение во времени элементов "статической" (т. е. "структурной") М. (используя для обобщенных т. о. определений изоморфизма, гомоморфизма и М. аппарат исчисления предикатов второй ступени – см. Предикатов исчисление). Именно в таком расширенном смысле говорят не просто о моделировании систем, но и о моделировании процессов (химич., физич., производственных, экономич., социальных, биологич. и др.). Примером описания к.-л. процесса, служащего для цели его моделирования, может служить схема его алгоритма; возможность четкого определения понятия алгоритма открыла, в частности, широкие возможности моделирования различных процессов с помощью программирования на электронно-вычислит. (цифровых) машинах. Др. пример "машинного" моделирования – использование т.н. аналоговых машин непрерывного действия [см. Техника(раздел Вычислительная техника) ]. Как это часто происходит в ходе развития науки, термин "М." применяется р а с ш и р и т е л ь н ы м образом и в тех случаях, когда предварит. учет всех подлежащих воспроизведению при моделировании параметров (необходимый для буквального понимания термина) оказывается, ввиду сложности моделируемой системы, практически невозможным. Это относится, в частности, к изменяющимся во времени т.н. самонастраивающимся М., напр. к "моделям обучения". Но даже если остаться в рамках точных определений, то в кибернетике (как и в физике, а также в математике и логике) понятие М. используется в обоих упомянутых выше смыслах [характерен следующий важный пример: "запись" наследств. информации в хромосомах м о д е л и р у е т родительский организм (или организмы) и в то же время м о д е л и р у е т с я в организме потомка ]. Эта кажущаяся двусмысленность термина "М." (снимаемая, впрочем, предложенным выше общим определением М., охватывающим оба смысла) на самом деле служит примером т.н. "оборачивания метода", характерного для конкретных применений многих гносеологич. понятий. Лит.: Клини С. К., Введение в метаматематику, пер. с англ., М., 1957, гл. 3, § 15; Эшби У. Р., Введение в кибернетику, пер. с англ., М., 1959, гл. 6; Лахути Д. Г., ?евзин И. И., Финн В. К., Об одном подходе к семантике, "Филос. науки" (Науч. докл. высш. школы), 1959, No 1; Черч?., Введение в математическую логику, пер. с англ., [т. ] 1, М., 1960, §7; Ревзин И. И., Модели языка, М., 1962; Генкин Л., О математич. индукции, пер. с англ., М., 1962; Моделирование в биологии. [Сб. ст. ], пер. с англ.,М., 1963; Молекулярная генетика. Сб. ст., пер. с англ. и нем., М., 1963; Бир С., Кибернетика и управление производством, пер. с англ., М., 1963; Саrnаp R., The logical syntax of language, L., 1937; Кemeny J. G., Models of logical systems, "J. Symbolic Logic", 1948, v. 13, No 1; Rosser J. В., Wang H., Non-standard models of formal logics, "J. Symbolic Logic", 1950, v. 15, No 2; Mostowaki ?., On models of axiomatic systems, "Fundamenta Math.", 1953, v. 39; Tarski ?., Contributions to the theory of models, 1–3, "Indagationes Math.", 1954, v. 16, 1955, v. 17; Mathematical interpretation of formal systems, Amst., 1955; Кemeny J. G., A new approach to semantics, "J. Symbolic Logic", 1956, v. 21, 1, 2; Sсоtt D., Suppes P., Foundational aspects of theories of measurement, "J. Symbolic Logic", 1958, v. 23, No 2; Rоbinsоn ?., Introduction to model theory and to the metamathematics of algebra, Amst., 1963; Сurrу H. В., Foundations of mathematical logic, N. Y., 1963. Ю. Гастев. Москва.

МОДЕЛЬ [дэ], -и, ж. 1. Образец какого-н. изделия или образец для изготовления чего-н., а также предмет, с к-рого воспроизводится изображение. Новая м. платья. М. для литья. Модели для скульптур. 2. Уменьшенное (или в натуральную величину) воспроизведение или макет чего-н. М. корабля. Летающая м. самолета. 3. Тип, марка конструкции. Новая м. автомобиля. 4. Схема какого-н. физического объекта или явления (спец.). М. атома. М. искусственного языка. 5. Манекенщик или манекенщица, а также (устар.) натурщик или натурщица. * Это не модель (прост.) - так делать не годится. || прил. модельный, -ая, -ое (к 1, 2, 3 и 5 знач.).


Смотреть значение МОДЕЛЬ в других словарях

Модель — (дэ), модели, ж. (фр. modele). 1. образец, образцовый экземпляр какого-н. изделия (спец.). товара. платья. 2. Воспроизведенный, обычно в уменьшенном виде, образец какого-и. сооружения........
Толковый словарь Ушакова

Топ-модель Ж. — 1. Манекенщица самого высокого класса; супермодель.
Толковый словарь Ефремовой

Вестминстерская Модель — - одно из распространенных названий парламентской системы правления. Термин происходит от названия резиденции английского парламента (Вестминстерское аббатство).
Политический словарь

Граф-модель Объекта Прогнозирования — Прогнозная модель в виде графа.
Политический словарь

Модель — - логический аналог сущностных отношений между предметами.
Политический словарь

Модель Хоманса — - теория группового поведения, изучающая причины образования неформальных групп в рабочей обстановке. Основными элементами являются взаимодействие, чувства, действия.
Политический словарь

Прогноз, Предсказание; Предположение; Прогностическая Модель — Научно обоснованное суждение о возможных состояниях объекта в будущем и (или) об альтернативных путях и сроках их осуществления. Примечания. 1. Когда этот объект рассматривается........
Политический словарь

Прогнозная Модель — Модель объекта прогнозирования, исследование которой позволяет получить информацию о возможных состояниях объекта в будущем и (или) путях и сроках их осуществления.
Политический словарь

Американская Модель Ипотеки — - так называемая двухуровневая
схема ипотечного кредитования, при которой ипотечные
кредиты, выданные на первичном ипотечном рынке, переуступаются специально........
Экономический словарь

Балансовая Модель — экономико-математическая
модель, построенная в виде уравнения или системы уравнений, представляющих балансовые соотношения и характеризующих
равенство поступившего........
Экономический словарь

Модель — [дэ́], -и; ж. [франц. modèle]
1. Образец какого-л. нового изделия, служащий наглядным примером для кого-, чего-л. Последние модели обуви. Выставка моделей детской одежды.
2.........
Толковый словарь Кузнецова

Бестарифная Модель Оплаты Труда — -
заработная плата
работника, определяемая четырьмя факторами: количеством отработанного рабочего времени, коэффициентом квалификационного уровня, коэффициентом........
Экономический словарь

Биноминальная Модель Назначения Цены Опциона — Модель назначения
цены
опциона, подразумевающая, что
активы, обеспечивающие опцион, могут принимать только два дискретных значения стоимости в следующем........
Экономический словарь

Бюджетная Модель — См. Модель бюджетная
Экономический словарь

Вероятностная Модель — математическая
модель экономического
процесса, учитывающая
факторы случайной природы.
Экономический словарь

Вестминстерская Модель — - в науке конституционного
права одно из распространенных названий парламентарной системы правления (см.
ПАРЛАМЕНТАРИЗМ)
Термин произошел от названия резиденции........
Экономический словарь

Двухфакторная Модель — Разработанная Фишером Блэком
версия модели определения стоимости
капитала при
коэффициенте "
бета", равном нулю.
Экономический словарь

Двухфакторная Модель Герцберга — - модель, согласно которой вся мотивация распадается на две большие категории: гигиенические факторы и мотивы.
Экономический словарь

Двухфакторная Модель Экономического Роста — модель
роста экономики, построенная на предположении, что только два
фактора -
капитал и
труд участвуют в создании валового национального
продукта.........
Экономический словарь

Дисконтная Дивидендная Модель — Формула оценки действительной (внутренней) стоимости компании, предполагающая вычисление текущей стоимости всех ожидаемых в будущем дивидендных выплат.
Экономический словарь

Ж-образная Модель — Модель технического
графика, отражающего
цены на
акции,
облигации или товарно-сырьевую продукцию, которая показывает, что цены достигли уровня поддержки........
Экономический словарь

Индексная Модель — Модель доходности акций, использующая для представления обыкновенных коэффициентов или коэффициентов систематического риска рыночные индексы, такие как индекс S&P 500.
Экономический словарь

Кейнсианская Модель — См.
Модель кейнсианская
Экономический словарь

Креативная Модель Экономического Поведения Предпринимателя — (от лат. creatio - созидание) - основана на новаторстве, использовании нововедений.
Экономический словарь

39. Понятие «модель», «моделирование». Виды моделей принятия решений.

Моделирование - это создание модели, то есть образа объекта, заменяющего его, для получения информации об этом объекте путем проведения экспериментов с его моделью.

Модель в общем смысле (обобщенная модель) есть создаваемый с целью получения и (или) хранения информации специфический объект (в форме мысленного образа, описания знаковыми средствами либо материальной системы), отражающий свойства, характеристики и связи объекта-оригинала произвольной природы, существенные для задачи, решаемой субъектом.

Если более просто, то модель - это упрощенное изображение конкретной жизненной (управленческой) ситуации.

Модели объектов являются более простыми системами, с четкой структурой, точно определенными взаимосвязями между составными частями, позволяющими более детально проанализировать свойства реальных объектов и их поведение в различных ситуациях. Таким образом, моделирование представляет собой инструмент анализа сложных систем и объектов.

Для теории принятия решений наиболее полезны модели, которые выражаются словами или формулами, алгоритмами и иными математическими средствами.

К моделям выдвигается ряд обязательных требований.

Во-первых , модель должна быть адекватной объекту, то есть, как можно более полно соответствовать ему с точки зрения выбранных для изучения свойств.

Во-вторых , модель должна быть полной. Это означает, что она должна давать возможность с помощью соответствующих способов и методов изучения модели исследовать и сам объект, то есть получить некоторые утверждения относительно его свойств, принципов работы, поведения в заданных условиях.

За счет того, что модель менее сложна, чем моделируемый объект, она позволяет руководителю лучше разобраться в конкретной ситуации и принять правильное решение.

Существует ряд причин обусловливающих использование модели вместо попыток прямого воздействия с реальным миром:

· Сложность реального мира. Реальный мир организации исключительно сложен, поэтому постичь его можно, только упростив реальный мир с помощью моделирования;

· Экспериментирование . Встречается множество управленческих ситуаций, в которых желательно опробовать и экспериментально проверить альтернативные варианты решения проблемы. Определенные эксперименты в условиях реального мира могут и должны быть выполнены. Когда фирма «Боинг» проектирует новый самолет, «Нисан» новый автомобиль, «Ай Би Эм» - новую модель компьютера, они всегда изготавливают образец, проверяют его в реальных условиях и только потом начинают полномасштабное производство. Но прямое экспериментирование такого типа дорого стоит и требует времени. Существуют бесчисленные критические ситуации, когда требуется принять решение, но нельзя экспериментировать в реальной жизни;

· Ориентация управления на будущее. Невозможно наблюдать явление, которое еще не существует и, может быть, никогда не состоится, как и проводить прямые эксперименты. Моделирование - единственный к настоящему времени систематизированный способ увидеть варианты будущего и определить потенциальные последствия альтернативных решений, что позволяет их объективно сравнивать.

4.3 Модели принятия решений в организации.

В зависимости от того, как процесс принятия решений воспринимается и интерпретируется на различных уровнях (индивидуальным или организационным) можно выделить 4 метода принятия решений.

4.3.1 Рациональная модель

Рациональная модель предполагает выбор такой альтернативы, которая принесет максимум выгоды для организации. В рамках такого подхода требуется всестороннее определение проблемы, изнурительный поиск альтернатив, тщательный подбор данных и их углубленный анализ. Оценочные критерии в этом случае обычно определяются в начале процесса. Обмен информацией должен происходить беспристрастно на основе выбора лучшей альтернативы для организации.

4.3.2 Модель ограниченной рациональности.

Модель ограниченной рациональности в принятии решений предполагает, что менеджер в своем желании быть рациональным зависит от возможностей познания, привычек и предупреждений. В зависимости от преобладания первого или второго, модель может иметь две разновидности: личностно ограниченная рациональность; организационно-ограниченная рациональность. Определение проблем при этом подходе происходит упрощенным образом и поиск альтернативы осуществляется, по крайней мере в начале процесса, в известных для менеджера или организации областях.

Анализ данных также упрощается, сдвигаясь с долгосрочных ориентиров на краткосрочные. Обмен информацией точен только отчасти и отражает во многом индивидуальные предубеждения, основанные на целях отдельных подразделений. Оценочные критерии сводятся до уровня прошлого опыта. Первая из альтернатив, превысившая этот уровень, кладется в основу выбора. Люди преследуют цели удовлетворенности, а не максимизации. Удовлетворенность при этом трактуется как курс действий, который достаточно хорош для организации в целом и требует минимум усилий ее членов. Примером может служить факт того, что очень часто инвестиции в организациях направляются туда, где можно получить удовлетворительную прибыль, без попытки найти лучший вариант из всех имеющихся.

4.3.3 Политическая модель.

Политическая модель организационных решений обычно отражает желания членов организации максимально реализовать в первую очередь свои индивидуальные интересы. Предпочтения устанавливаются еще на раннем этапе процесса, исходя из групповых целей. Обмен информацией носит спорадический характер. Определение проблемы, поиск альтернативы, сбор данных и оценочные критерии выступают скорее всего, как средства, используемые для того, чтобы склонить решение в чью-либо пользу. Решение в данном случае становится функцией распределения власти в организации и эффективности политики, используемой различными участниками процесса.

Каждый современный человек ежедневно сталкивается с понятиями «объект» и «модель». Примерами объектов являются как предметы, доступные для осязания (книга, земля, стол, ручка, карандаш), так и недоступные (звезды, небо, метеориты), предметы художественного творчества и умственной деятельности (сочинение, стихотворение, решение задачи, картина, музыка и другие). Причем каждый объект человеком воспринимается только как единое целое.

Объект. Виды. Характеристики

Исходя из вышесказанного, можно сделать вывод, что объект является частью внешнего мира, которая может быть воспринята в качестве единого целого. Каждый предмет восприятия имеет свои индивидуальные характеристики, отличающие его от других (форма, сфера использования, цвет, запах, размер и так далее). Важнейшей характеристикой объекта является название, но для полного качественного его описания одного названия недостаточно. Чем более полно и подробно описан объект, тем легче процесс его распознавания.

Модели. Определение. Классификация

В своей деятельности (образовательной, научной, художественной, технологической) человек ежедневно использует уже существующие и создает новые модели внешнего мира. Они позволяют сформировать впечатление о процессах и объектах, недоступных для непосредственного восприятия (очень маленькие или, наоборот, очень большие, очень медленные или очень быстрые, очень далекие и так далее).

Итак, модель - это некоторый объект, отражающий важнейшие особенности изучаемого явления, объекта либо процесса. Может существовать несколько вариаций моделей одного и того же объекта, также как несколько объектов могут быть описаны одной единственной моделью. Например, подобная ситуация возникает в механике, когда различные тела с материальной оболочкой могут быть выражены то есть одинаковой моделью (человек, автомобиль, поезд, самолет).

Важно помнить, что ни одна модель не способна полноценно заменить изображаемый объект, так как она отображает только некоторые из его свойств. Но порой при решении определенных задач различных научных и промышленных течений описание внешнего вида модели может быть не просто полезным, но единственной возможностью представить и изучить особенности характеристик объекта.

Сфера применения предметов моделирования

Модели играют важную роль в различных сферах жизни человека: в науке, образовании, торговле, проектировании и других. Например, без их применения невозможны проектирование и сборка технических устройств, механизмов, электрических цепей, машин, зданий и так далее, так как без предварительных расчетов и создания чертежа выпуск даже простейшей детали невозможен.

Часто используются модели в образовательных целях. Они носят названия наглядных. Например, из географии представление о Земле как о планете человек получает, изучая глобус. Также актуальными наглядные модели являются и в других науках (химии, физике, математике, биологии и других).

В свою очередь, теоретические модели востребованы при изучении естественных и (биологии, химии, физики, геометрии). Они отражают свойства, поведение и строение объектов, подвергающихся изучению.

Моделирование как процесс

Моделирование - метод познавания, включающий в себя исследование существующих и создание новых моделей. Предметом познания данной науки является модель. ранжируются в зависимости от различных свойств. Как известно, любой объект имеет множество характеристик. При создании определенной модели выделяются лишь наиболее важные для решения поставленной задачи.

Процессом создания моделей является художественное творчество во всем своем разнообразии. В связи с этим фактически каждое художественное или литературное произведение можно рассматривать в качестве модели реального объекта. Например, картины являются моделями реальных пейзажей, натюрмортов, людей, литературные произведения - моделями человеческих жизней и так далее. Например, при создании модели самолета с целью изучения его аэродинамических качеств важно отразить в ней геометрические свойства оригинала, но абсолютно неважен его цвет.

Одни и те же объекты различными науками изучаются с разных точек зрения, а соответственно, их виды моделей для изучения будут также отличаться. Например, физика изучает процессы и результаты взаимодействия объектов, химия - химический состав, биология - поведение и строение организмов.

Модель относительно временного фактора

Относительно времени модели делятся на два вида: статические и динамические. Примером первого вида является единоразовое обследование человека в клинике. Оно отображает картину его состояния здоровья на данный момент, в то время как его медицинская карта будет моделью динамической, отражающей изменения, происходящие в организме на протяжении определенного периода времени.

Модель. Виды моделей относительно формы

Как уже понятно, модели могут различаться по разным характеристикам. Так, все ныне известные виды моделей данных можно условно разделить на два основных класса: материальные (предметные) и информационные.

Первый вид передает физические, геометрические и иные свойства объектов в материальной форме (анатомический муляж, глобус, макет здания и так далее).

Виды разнятся по форме реализации: знаковая и образная. Образные модели (фотографии, рисунки и другое) являются зрительными реализациями объектов, зафиксированными на определенном носителе (фото-, кинопленке, бумажном или цифровом).

Они широко применяются в образовательном процессе (плакаты), при изучении различных наук (ботаника, биология, палеонтология и других). Знаковые модели - это реализации объектов в виде символов одной из известных языковых систем. Они могут быть представлены в виде формул, текста, таблиц, схем и так далее. Существуют случаи, когда, создавая знаковую модель (виды моделей передают конкретно то содержание, которое требуется для изучения определенных характеристик объекта), используют сразу несколько известных языков. Примером в данном случае выступают различные графики, диаграммы, карты и подобное, где используются как графические символы, так и символы одной из языковых систем.

С целью отражения сведений из различных сфер жизни применяются три основных вида информационных моделей: сетевые, иерархические и табличные. Из них наиболее популярным является последний, применяемый для фиксации различных состояний объектов и характерных для них данных.

Табличная реализация модели

Данный вид информационной модели, как уже было сказано выше, является наиболее известным. Выглядит он следующим образом: это обычная, состоящая из строк и столбцов таблица прямоугольной формы, графы которой заполнены символами одного из известных знаковых языков мира. Применяются табличные модели с целью характеристики объектов, обладающих одинаковыми свойствами.

С их помощью в различных научных сферах могут быть созданы как динамические, так и статические модели. Например, таблицы, содержащие математические функции, различные статистические данные, расписания поездов и так далее.

Математическая модель. Виды моделей

Отдельной разновидностью информационных моделей являются математические. Все виды обычно состоят из уравнений, написанных на языке алгебры. Решение данных задач, как правило, основывается на процессе поиска равнозначных преобразований, которые способствуют выражению переменной величины в виде формулы. Существуют также для некоторых уравнений и точные решения (квадратные, линейные, тригонометрические и так далее). Как следствие, для их решения приходится применять методы решения с приближенной заданной точностью, иначе говоря, такие виды математических данных, как числовой (метод половинного деления), графический (построение графиков) и другие. Метод половинного деления целесообразно использовать лишь при условии, что известен отрезок, где функция при определенных значениях принимает полярные значения.

А метод построения графика является унифицированным. Его можно использовать как в вышеописанном случае, так и в ситуации, когда решение может быть только приближенным, а не точным, в случае так называемого "грубого" решения уравнений.