Десятичные дроби именная часть. Десятичные дроби, определения, запись, примеры, действия с десятичными дробями

Пример:



Запятая в десятичной дроби отделяет:
1) целую часть от дробной;
2) столько знаков, сколько нулей в знаменателе обыкновенной дроби.


Как перевести десятичную дробь в обыкновенную?

Например, \(0,35\) читается как «ноль целых, тридцать пять сотых». Так и пишем: \(0 \frac{35}{100}\). Целая часть равна нулю, то есть ее можно просто не писать, а дробную часть – сократить на \(5\).
Получим: \(0,35=0\frac{35}{100}=\frac{35}{100}=\frac{7}{20}\).
Еще примеры: \(2,14=2\frac{14}{100}=\frac{214}{100}=\frac{107}{50}\);
\(7,026=7\frac{26}{1000}=\frac{7026}{1000}\).

Этот переход можно делать и быстрее:

Запишите в числитель все число без запятой, а в знаменатель – единицу и столько нулей, столько цифр было отделено запятой.

Звучит сложно, поэтому смотрите картинку:

Как обыкновенную дробь перевести в десятичную?

Для этого надо домножить числитель и знаменатель дроби на такое число, чтобы в знаменателе получилось \(10\), \(100\), \(1000\) и т.д., а потом записать результат в десятичном виде.

Примеры: \(\frac{3}{5}\) \(=\)\(\frac{3\cdot 2}{5\cdot 2}\) \(=\)\(\frac{6}{10}\) \(=0,6\); \(\frac{63}{25}\) \(=\frac{63 \cdot 4}{25\cdot 4}\) \(=\)\(\frac{252}{100}\) \(=2,52\); \(\frac{7}{200}\) \(=\)\(\frac{7 \cdot 5}{200\cdot 5}\) \(=\)\(\frac{35}{1000}\) \(=0,035\).

Этот способ хорошо работает, когда в знаменателе дроби: \(2\), \(5\), \(20\), \(25\)… и т.д., то есть когда сразу понятно, на что надо домножать. Однако в остальных случаях:

Для превращения обыкновенной дроби в десятичную нужно поделить числитель дроби на ее знаменатель.

Например , дробь \(\frac{7}{8}\) проще преобразовать делением \(7\) на \(8\), чем догадываться, что \(8\) можно домножить на \(125\) и получить \(1000\).

Далеко не все обыкновенные дроби без проблем превращаются в десятичные. Точнее, превращаются-то все, но вот записать результат такого превращения бывает весьма трудно. Например, дробь \(\frac{9}{17}\) в десятичном виде будет выглядеть как \(0,52941…\) - и так далее, бесконечный ряд неповторяющихся цифр. Такие дроби обычно оставляют в виде обыкновенных.

Однако некоторые дроби, дающие бесконечный ряд цифр в десятичном виде записаны быть могут. Так происходит в случае, если цифры в этом ряду повторяются. Например, дробь \(\frac{2}{3}\) в десятичном виде выглядит так \(0,66666…\) - бесконечный ряд шестерок. Ее записывают вот так: \(0,(6)\). Содержимое скобки – это как раз и есть бесконечно повторяющаяся часть (так называемый период дроби).

Еще примеры: \(\frac{100}{27}\) \(=\)\(3,7037037037…=3,(703)\).
\(\frac{579}{110}\) \(=5,2636363636…=5,2(63)\).

Виды десятичных дробей:

Сложение и вычитание десятичных дробей

Сложение (вычитание) десятичных дробей выполняется так же, как сложение (вычитание) : главное, чтобы запятая во втором числе стояла под запятой в первом.



Умножение десятичных дробей

Чтобы перемножить две десятичные дроби, нужно перемножить их как обычные числа, не обращая внимания на запятые. Потом сложить количество знаков после запятой в первом числе и во втором, а затем отделить полученное количество знаков в итоговом числе, считая справа налево.

Лучше \(1\) раз посмотреть на картинку, чем \(10\) раз прочитать, поэтому наслаждайтесь:


Деление десятичных дробей

Чтобы разделить десятичную дробь на десятичную дробь, надо перенести запятую во втором числе (делителе) до тех пор, пока оно не станет целым. Потом на столько же перенести запятую в первом числе (делимом). Затем нужно разделить получившиеся числа как обычно. При этом в ответе нужно будет не забыть поставить запятую сразу же, как мы «перейдем за запятую» в делимом.

Снова картинка объяснит принцип лучше любого текста.

На практике бывает легче представлять деление как обыкновенную дробь, потом домножением числителя и знаменателя убирать запятые (или просто сразу передвигать запятые, как делали выше), а затем сокращать получившиеся числа.

\(13,12:1,6=\)\(\frac{13,12}{1,6}\) \(=\)\(\frac{13,12·100}{1,6·100}\) \(=\)\(\frac{1312}{160}\) \(=\)\(\frac{328}{40}\) \(=\)\(\frac{82}{10}\) \(=8,2\).

Пример . Вычислите \(0,0625:(\)\(\frac{1}{8}\) \(+\)\(\frac{5}{16}\) \()\cdot 2,8\).

Решение :

\(0,0625:(\)\(\frac{1}{8}\) \(+\)\(\frac{5}{16}\) \()\cdot 2,8=\)

Чтобы рациональное число m/n записать в виде десятичной дроби, нужно числитель разделить на знаменатель. При этом частное записывается конечной или бесконечной десятичной дробью.

Записать данное число в виде десятичной дроби.

Решение. Разделим в столбик числитель каждой дроби на ее знаменатель: а) делим 6 на 25; б) делим 2 на 3; в) делим 1 на 2, а затем получившуюся дробь припишем к единице — целой части данного смешанного числа.

Несократимые обыкновенные дроби, знаменатели которых не содержат других простых делителей, кроме 2 и 5 , записываются конечной десятичной дробью.

В примере 1 в случае а) знаменатель 25=5·5; в случае в) знаменатель равен 2, поэтому, мы получили конечные десятичные дроби 0,24 и 1,5 . В случае б) знаменатель равен 3, поэтому результат нельзя записать в виде конечной десятичной дроби.

А можно ли без деления в столбик обратить в десятичную дробь такую обыкновенную дробь, знаменатель которой не содержит других делителей, кроме 2 и 5? Разберемся! Какую дробь называют десятичной и записывают без дробной черты? Ответ: дробь со знаменателем 10; 100; 1000 и т.д. А каждое из этих чисел — это произведение равного количества «двоек» и «пятерок». На самом деле: 10=2 ·5 ; 100=2 ·5 ·2 ·5 ; 1000=2 ·5 ·2 ·5 ·2 ·5 и т.д.

Следовательно, знаменатель несократимой обыкновенной дроби нужно будет представить в виде произведения «двоек» и «пятерок», а затем домножить на 2 и (или) на 5 так, чтобы «двоек» и «пятерок» стало поровну. Тогда знаменатель дроби будет равен 10 или 100 или 1000 и т.д. Чтобы значение дроби не изменилось — числитель дроби умножим на то же число, на которое умножили знаменатель.

Представить в виде десятичной дроби следующие обыкновенные дроби:

Решение. Каждая из данных дробей является несократимой. Разложим знаменатель каждой дроби на простые множители.

20=2·2·5. Вывод: не хватает одной «пятерки».

8=2·2·2. Вывод: не хватает трех «пятерок».

25=5·5. Вывод: не хватает двух «двоек».

Замечание. На практике чаще не используют разложение знаменателя на множители, а просто задаются вопросом: на сколько нужно умножить знаменатель, чтобы в результате получилась единица с нулями (10 или 100 или 1000 и т.д.). А затем на это же число умножают и числитель.

Так, в случае а) (пример 2 ) из числа 20 можно получить 100 умножением на 5, поэтому, на 5 нужно умножить числитель и знаменатель.

В случае б) (пример 2 ) из числа 8 число 100 не получится, но получится число 1000 умножением на 125. На 125 умножается и числитель (3) и знаменатель (8) дроби.

В случае в) (пример 2 ) из 25 получится 100, если умножить на 4. Значит, и числитель 8 нужно умножить на 4.

Бесконечная десятичная дробь, у которой одна или несколько цифр неизменно повторяются в одной и той же последовательности, называется периодической десятичной дробью. Совокупность повторяющихся цифр называется периодом этой дроби. Для краткости период дроби записывают один раз, заключая его в круглые скобки.

В случае б) (пример 1 ) повторяющаяся цифра одна и равна 6. Поэтому, наш результат 0,66... запишется так: 0,(6) . Читают: нуль целых, шесть в периоде.

Если между запятой и первым периодом есть одна или несколько не повторяющихся цифр, то такая периодическая дробь называется смешанной периодической дробью.

Несократимая обыкновенная дробь, знаменатель которой вместе с другими множителями содержит множитель 2 или 5 , обращается в смешанную периодическую дробь.

Записать в виде десятичной дроби числа:

Любое рациональное число можно записать в виде бесконечной периодической десятичной дроби.

Записать в виде бесконечной периодической дроби числа.

При сложении десятичных дробей надо записать их одну под другой так, чтобы одинаковые разряды были друг под другом, а запятая - под запятой, и сложить дроби так, как складывают натуральные числа. Сложим, напрнмер, дроби 12,7 и 3,442. Первая дробь содержит одну цифру после запятой, а вторая - три. Чтобы выполнить сложение, преобразуем первую дробь так, чтобы после запятой было три цифры: , тогда

Аналогично выполняется вычитание десятичных дробей. Найдем разность чисел 13,1 и 0,37:

При умножении десятичных дробей достаточно перемножить заданные числа, не обращая внимания на запятые (как натуральные числа), а затем в результате справа отделить запятой столько цифр, сколько их стоит после запятой в обоих множителях суммарно.

Например, умножим 2,7 на 1,3. Имеем . Запятой отделим справа две цифры (сумма цифр у множителей после запятой равна двум). В итоге получаем 2,7 1,3=3,51.

Если в произведении получается меньше цифр, чем надо отделить запятой, то впереди пишут недостающие нули, например:

Рассмотрим умножение десятичной дроби на 10, 100, 1000 и т. д. Пусть нужно умножить дробь 12,733 на 10. Имеем . Отделив справа запятой три цифры, получим Но . Значит,

12 733 10=127,33. Таким образом, умножение десятичной дроби на Ю сводится к переносу запятой на одну цифру вправо.

Вообще чтобы умножить десятичную дробь на 10, 100, 1000, надо в этой дроби перенести запятую на 1, 2, 3 цифры вправо Сприписав в случае необходимости к дроби справа определенное число нулей). Например,

Деление десятичной дроби на натуральное число выполняется так же, как деление натурального числа на натуральное, а запятую в частном ставят после того, как закончено деление целой части. Пусть надо разделить 22,1 на 13:

Если целая часть делимого меньше делителя, то в ответе получается нуль целых, например:

Рассмотрим теперь деление десятичной дроби на десятичную. Пусть нужно разделить 2,576 на 1,12. Для этого и в делимом, и в делителе перенесем запятую вправо на столько цифр, сколько их имеется после запятой в делителе (в данном примере на две). Иными словами, умножим делимое и делитель на 100 - от этого частное не изменится. Тогда нужно разделить дробь 257,6 на натуральное число 112, т. е. задача сводится к уже рассмотренному случаю:

Чтобы разделить десятичную дробь на надо в этой дроби перенести запятую на цифр влево (при этом в случае необходимости слева приписывается нужное число нулей). Например, .

Как для натуральных чисел деление не всегда выполнимо, так оно не всегда выполнимо и для десятичных дробей. Разделим для примера 2,8 на 0,09:

В результате получается так называемая бесконечная десятичная дробь. В таких случаях переходят к обыкновенным дробям. Например:

Может оказаться так, что одни числа записаны в виде обыкновенных дробей, другие - в виде смешанных чисел, третьи - в виде десятичных дробей. При выполнении действий над такими числами можно поступать по-разному: либо обратить десятичные дроби в обыкновенные и применить правила действий над обыкновенными дробями, либо обратить обыкновенные дроби и смешанные числа в десятичные дроби (если это возможно) и применить правила действий над десятичными дробями.

Дроби

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Дроби в старших классах не сильно досаждают. До поры до времени. Пока не столкнётесь со степенями с рациональными показателями да логарифмами. А вот там…. Давишь, давишь калькулятор, а он все полное табло каких-то циферок кажет. Приходится головой думать, как в третьем классе.

Давайте уже разберёмся с дробями, наконец! Ну сколько можно в них путаться!? Тем более, это всё просто и логично. Итак, какие бывают дроби?

Виды дробей. Преобразования.

Дроби бывают трёх видов.

1. Обыкновенные дроби , например:

Иногда вместо горизонтальной чёрточки ставят наклонную черту: 1/2, 3/4, 19/5, ну, и так далее. Здесь мы часто будем таким написанием пользоваться. Верхнее число называется числителем , нижнее - знаменателем. Если вы постоянно путаете эти названия (бывает...), скажите себе с выражением фразу: "Ззззз апомни! Ззззз наменатель - вниззззз у!" Глядишь, всё и ззззапомнится.)

Чёрточка, что горизонтальная, что наклонная, означает деление верхнего числа (числителя) на нижнее (знаменатель). И всё! Вместо чёрточки вполне можно поставить знак деления - две точки.

Когда деление возможно нацело, это надо делать. Так, вместо дроби "32/8" гораздо приятнее написать число "4". Т.е. 32 просто поделить на 8.

32/8 = 32: 8 = 4

Я уж и не говорю про дробь "4/1". Которая тоже просто "4". А если уж не делится нацело, так и оставляем, в виде дроби. Иногда приходится обратную операцию проделывать. Делать из целого числа дробь. Но об этом далее.

2. Десятичные дроби , например:

Именно в таком виде нужно будет записывать ответы на задания "В".

3. Смешанные числа , например:

Смешанные числа практически не используются в старших классах. Для того, чтобы с ними работать, их всяко надо переводить в обыкновенные дроби. Но это точно надо уметь делать! А то попадётся такое число в задачке и зависните... На пустом месте. Но мы-то вспомним эту процедуру! Чуть ниже.

Наиболее универсальны обыкновенные дроби . С них и начнём. Кстати, если в дроби стоят всякие логарифмы, синусы и прочие буковки, это ничего не меняет. В том смысле что все действия с дробными выражениями ничем не отличаются от действий с обыкновенными дробями !

Основное свойство дроби.

Итак, поехали! Для начала я вас удивлю. Всё многообразие преобразований дробей обеспечивается одним-единственным свойством! Оно так и называется, основное свойство дроби . Запоминайте: если числитель и знаменатель дроби умножить (разделить) на одно и то же число, дробь не изменится. Т.е:

Понятно, что писать можно дальше, до посинения. Синусы и логарифмы пусть вас не смущают, с ними дальше разберёмся. Главное понять, что все эти разнообразные выражения есть одна и та же дробь . 2/3.

А оно нам надо, все эти превращения? Ещё как! Сейчас сами увидите. Для начала употребим основное свойство дроби для сокращения дробей . Казалось бы, вещь элементарная. Делим числитель и знаменатель на одно и то же число и все дела! Ошибиться невозможно! Но... человек - существо творческое. Ошибиться везде может! Особенно, если приходится сокращать не дробь типа 5/10, а дробное выражение со всякими буковками.

Как правильно и быстро сокращать дроби, не делая лишней работы, можно прочитать в особом Разделе 555 .

Нормальный ученик не заморачивается делением числителя и знаменателя на одно и то же число (или выражение)! Он просто зачеркивает всё одинаковое сверху и снизу! Здесь-то и таится типичная ошибка, ляп, если хотите.

Например, надо упростить выражение:

Тут и думать нечего, зачеркиваем букву "а" сверху и двойку снизу! Получаем:

Все правильно. Но реально вы поделили весь числитель и весь знаменатель на "а". Если вы привыкли просто зачеркивать, то, впопыхах, можете зачеркнуть "а" в выражении

и получить снова

Что будет категорически неверно. Потому что здесь весь числитель на "а" уже не делится ! Эту дробь сократить нельзя. Кстати, такое сокращение – это, гм… серьезный вызов преподавателю. Такого не прощают! Запомнили? При сокращении делить надо весь числитель и весь знаменатель!

Сокращение дробей сильно облегчает жизнь. Получится где-нибудь у вас дробь, к примеру 375/1000. И как теперь с ней дальше работать? Без калькулятора? Умножать, скажем, складывать, в квадрат возводить!? А если не полениться, да аккуратненько сократить на пять, да ещё на пять, да ещё... пока сокращается, короче. Получим 3/8! Куда приятнее, правда?

Основное свойство дроби позволяет переводить обыкновенные дроби в десятичные и наоборот без калькулятора ! Это важно на ЕГЭ, верно?

Как переводить дроби из одного вида в другой.

С десятичными дробями всё просто. Как слышится, так и пишется! Скажем, 0,25. Это ноль целых, двадцать пять сотых. Так и пишем: 25/100. Сокращаем (делим числитель и знаменатель на 25), получаем обычную дробь: 1/4. Всё. Бывает, и не сокращается ничего. Типа 0,3. Это три десятых, т.е. 3/10.

А если целых - не ноль? Ничего страшного. Записываем всю дробь без всяких запятых в числитель, а в знаменатель - то, что слышится. Например: 3,17. Это три целых, семнадцать сотых. Пишем в числитель 317, а в знаменатель 100. Получаем 317/100. Ничего не сокращается, значит всё. Это ответ. Элементарно, Ватсон! Из всего сказанного полезный вывод: любую десятичную дробь можно превратить в обыкновенную .

А вот обратное преобразование, обыкновенной в десятичную, некоторые без калькулятора не могут сделать. А надо! Как вы ответ записывать будете на ЕГЭ!? Внимательно читаем и осваиваем этот процесс.

Десятичная дробь чем характерна? У неё в знаменателе всегда стоит 10, или 100, или 1000, или 10000 и так далее. Если ваша обычная дробь имеет такой знаменатель, проблем нет. Например, 4/10 = 0,4. Или 7/100 = 0,07. Или 12/10 = 1,2. А если в ответе на задание раздела "В" получилось 1/2? Что в ответ писать будем? Там десятичные требуются...

Вспоминаем основное свойство дроби ! Математика благосклонно позволяет умножать числитель и знаменатель на одно и то же число. На любое, между прочим! Кроме нуля, разумеется. Вот и применим это свойство себе на пользу! На что можно умножить знаменатель, т.е. 2 чтобы он стал 10, или 100, или 1000 (поменьше лучше, конечно...)? На 5, очевидно. Смело умножаем знаменатель (это нам надо) на 5. Но, тогда и числитель надо умножить тоже на 5. Это уже математика требует! Получим 1/2 = 1х5/2х5 = 5/10 = 0,5. Вот и всё.

Однако, знаменатели всякие попадаются. Попадётся, например дробь 3/16. Попробуй, сообрази тут, на что 16 умножить, чтоб 100 получилось, или 1000... Не получается? Тогда можно просто разделить 3 на 16. За отсутствием калькулятора делить придётся уголком, на бумажке, как в младших классах учили. Получим 0,1875.

А бывают и совсем скверные знаменатели. Например, дробь 1/3 ну никак не превратишь в хорошую десятичную. И на калькуляторе, и на бумажке, мы получим 0,3333333... Это значит, что 1/3 в точную десятичную дробь не переводится . Так же, как и 1/7, 5/6 и так далее. Много их, непереводимых. Отсюда ещё один полезный вывод. Не каждая обыкновенная дробь переводится в десятичную !

Кстати, это полезная информация для самопроверки. В разделе "В" в ответ надо десятичную дробь записывать. А у вас получилось, например, 4/3. Эта дробь не переводится в десятичную. Это означает, что где-то вы ошиблись по дороге! Вернитесь, проверьте решение.

Итак, с обыкновенными и десятичными дробями разобрались. Осталось разобраться со смешанными числами. Для работы с ними их всяко нужно перевести в обыкновенные дроби. Как это сделать? Можно поймать шестиклассника и спросить у него. Но не всегда шестиклассник окажется под руками... Придётся самим. Это несложно. Надо знаменатель дробной части умножить на целую часть и прибавить числитель дробной части. Это будет числитель обычной дроби. А знаменатель? Знаменатель останется тем же самым. Звучит сложно, но на деле всё элементарно. Смотрим пример.

Пусть в задачке вы с ужасом увидели число:

Спокойно, без паники соображаем. Целая часть - это 1. Единица. Дробная часть - 3/7. Стало быть, знаменатель дробной части - 7. Этот знаменатель и будет знаменателем обыкновенной дроби. Считаем числитель. 7 умножаем на 1 (целая часть) и прибавляем 3 (числитель дробной части). Получим 10. Это будет числитель обыкновенной дроби. Вот и всё. Еще проще это выглядит в математической записи:

Ясненько? Тогда закрепите успех! Переведите в обыкновенные дроби. У вас должно получится 10/7, 7/2, 23/10 и 21/4.

Обратная операция - перевод неправильной дроби в смешанное число - в старших классах редко требуется. Ну если уж... И если Вы - не в старших классах - можете заглянуть в особый Раздел 555 . Там же, кстати, и про неправильные дроби узнаете.

Ну вот, практически и всё. Вы вспомнили виды дробей и поняли, как переводить их из одного вида в другой. Остаётся вопрос: зачем это делать? Где и когда применять эти глубокие познания?

Отвечаю. Любой пример сам подсказывает необходимые действия. Если в примере смешались в кучу обыкновенные дроби, десятичные, да ещё и смешанные числа, переводим всё в обыкновенные дроби. Это всегда можно сделать . Ну а если написано, что-нибудь типа 0,8 + 0,3, то так и считаем, безо всякого перевода. Зачем нам лишняя работа? Мы выбираем тот путь решения, который удобен нам !

Если в задании сплошь десятичные дроби, но гм... злые какие-то, перейдите к обыкновенным, попробуйте! Глядишь, всё и наладится. Например, придется в квадрат возводить число 0,125. Не так-то просто, если от калькулятора не отвыкли! Мало того, что числа перемножать столбиком надо, так ещё думай, куда запятую вставить! В уме точно не получится! А если перейти к обыкновенной дроби?

0,125 = 125/1000. Сокращаем на 5 (это для начала). Получаем 25/200. Ещё раз на 5. Получаем 5/40. О, ещё сокращается! Снова на 5! Получаем 1/8. Легко возводим в квадрат (в уме!) и получаем 1/64. Всё!

Подведём итоги этого урока.

1. Дроби бывают трёх видов. Обыкновенные, десятичные и смешанные числа.

2. Десятичные дроби и смешанные числа всегда можно перевести в обыкновенные дроби. Обратный перевод не всегда возможен.

3. Выбор вида дробей для работы с заданием зависит от этого самого задания. При наличии разных видов дробей в одном задании, самое надёжное - перейти к обыкновенным дробям.

Теперь можно потренироваться. Для начала переведите эти десятичные дроби в обыкновенные:

3,8; 0,75; 0,15; 1,4; 0,725; 0,012

Должны получиться вот такие ответы (в беспорядке!):

На этом и завершим. В этом уроке мы освежили в памяти ключевые моменты по дробям. Бывает, правда, что освежать особо нечего...) Если уж кто совсем крепко забыл, или ещё не освоил... Тем можно пройти в особый Раздел 555 . Там все основы подробненько расписаны. Многие вдруг всё понимать начинают. И решают дроби с лёту).

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

В швейной мастерской было 5 цветов ленты. Красной ленты было больше, чем синей на 2,4 метра, но меньше, чем зеленой на 3,8 метра. Белой ленты было больше, чем черной на 1,5 метра, но меньше, чем зеленой на 1,9 метра. Сколько метров ленты всего было в мастерской, если белой было 7,3 метра?

    Решение
  • 1) 7,3 + 1,9 = 9,2 (м) зеленой ленты было в мастерской;
  • 2) 7,3 – 1,5 = 5,8 (м) черной ленты;
  • 3) 9,2 – 3,8 = 5,4 (м) красной ленты;
  • 4) 5,4 - 2,4 = 3 (м) синей ленты;
  • 5) 7,3 + 9,2 + 5,8 + 5,4 + 3 = 30,7 (м).
  • Ответ: всего в мастерской было 30,7 метров ленты.

Задача 2

Длина прямоугольного участка составляет 19,4 метра, а ширина на 2,8 метра меньше. Вычислите периметр участка.

    Решение
  • 1) 19,4 – 2,8 = 16,6(м) ширина участка;
  • 2) 16,6 * 2 + 19,4 * 2 = 33,2 + 38,8 = 72(м).
  • Ответ: периметр участка равен 72 метра.

Задача 3

Длина прыжка кенгуру может достигать 13,5 метров в длину. Мировой рекорд для человека составляет 8,95 метров. Насколько дальше прыгает кенгуру?

    Решение
  • 1) 13,5 – 8,95 = 4,55 (м).
  • 2) Ответ: кенгуру прыгает на 4,55 метра дальше.

Задача 4

Самая низкая температура на планете была зарегистрирована на станции Восток в Антарктиде, летом 21 июля 1983 года и составляла -89,2 ° C, а самая жаркая в городке Эль-Азизия, 13 сентября 1922 года составляла +57,8 ° C. Вычисли разницу между температурами.

    Решение
  • 1) 89,2 + 57,8 = 147° C.
  • Ответ: разница между температурами составляет 147° C.


Задача 5

Грузоподъемность фургона Газель составляет 1,5 тонн, а карьерного самосвала БелАЗ в 24 раза больше. Вычислите грузоподъемность самосвала БелАЗ.

    Решение
  • 1) 1,5 * 24 = 36 (тонн).
  • Ответ: грузоподъемность БелАЗа 36 тонн.

Задача 6

Максимальная скорость движения Земли по своей орбите 30,27 км/сек, а скорость Меркурия на 17,73 км больше. С какой скоростью Меркурий движется по своей орбите?

    Решение
  • 1) 30,27 + 17,73 = 48 (км/сек).
  • Ответ: скорость движение Меркурия по орбите 48 км/сек.

Задача 7

Глубина Марианской впадины составляет 11,023 км, а высота самой высокой горы в мире - Джомолунгмы 8,848 км над уровнем моря. Вычисли разницу между этими двумя точками.

    Решение
  • 1) 11,023 + 8,848 = 19,871(км).
  • Ответ: 19, 871 км.

Задача 8

Для Коли, как и для любого здорового человека, нормальная температура тела 36,6 ° C, а для его четвероногого друга Шарика на 2,2 ° C больше. Какая температура для Шарика считается нормальной?

    Решение
  • 1) 36,6 + 2,2 = 38,8° C.
  • Ответ: для Шарика нормальная температура тела 38,8° C.

Задача 9

Маляр за 1 день покрасил 18,6 м² забора, а его помощник, на 4,4 м² меньше. Сколько всего м2 забора покрасит маляр и его помощник за рабочую неделю, если она равна пяти дням?

    Решение
  • 1) 18,6 – 4,4 = 14,2 (м²) покрасит за 1 день помощник маляра;
  • 2) 14,2 + 18,6 = 32,8 (м²) покрасят за 1 день вместе;
  • 3) 32,8 *5 = 164 (м²).
  • Ответ: за рабочую неделю маляр и его помощник вместе покрасят 164 м² забора.

Задача 10

От двух пристаней навстречу друг другу одновременно отошли два катера. Скорость одного катера 42,2 км/ч второго на 6 км/ч больше. Какое расстояние будет между катерами через 2,5 часа, если расстояние между пристанями 140,5 км?

    Решение
  • 1) 42,2 + 6 = 48,2 (км/ч) скорость второго катера;
  • 2) 42,2 * 2,5 = 105,5 (км) преодолеет первый катер за 2,5 часа;
  • 3) 48,2 * 2,5 = 120,5 (км) преодолеет второй катер за 2,5 часа;
  • 4) 140,5 – 105,5 = 35 (км) расстояние от первого катера до противоположной пристани;
  • 5) 140,5 – 120, 5 = 20 (км) расстояние от второго катера до противоположной пристани;
  • 6) 35 + 20 = 55 (км);
  • 7) 140 – 55 = 85 (км).
  • Ответ: между катерами будет 85 км.

Задача 11

Каждый день велосипедист преодолевает 30,2 км. Мотоциклист, если бы затрачивал столько же времени, преодолевал бы расстояние в 2,5 раза большее, чем велосипедист. Какое расстояние может преодолеть мотоциклист за 4 дня?

    Решение
  • 1) 30,2 * 2,5 = 75,5 (км) за 1 день преодолеет мотоциклист;
  • 2) 75,5 * 4 = 302 (км).
  • Ответ: мотоциклист может преодолеть за 4 дня 302 км.

Задача 12

В магазине за 1 день было продано 18, 3 кг печенья, а конфет на 2,4 кг меньше. Сколько конфет и печенья вместе было продано в магазине за этот день?

    Решение
  • 1) 18,3 – 2, 4 = 15,9 (кг) конфет было продано в магазине;
  • 2) 15,9 + 18,3 = 34,2 (кг).
  • Ответ: конфет и печенья всего было продано 34,2 кг.