1 ядерный реактор. Как устроен и работает ядерный реактор

Открытие нейтрона явилось предвестником атомной эры человечества, поскольку в руках физиков оказалась частица, способная, благодаря отсутствию заряда, проникнуть в любые, даже тяжелые, ядра. В ходе экспериментов по бомбардировке ядер урана нейтронами, проведенных итальянским физиком Э. Ферми, были получены радиоактивные изотопы и трансурановые элементы - нептуний и плутоний. Таким образом, стало возможным создание ядерного реактора - установки, превосходящей по своей энергетической мощи все, что было до того создано человечеством.

Атомный реактор - это аппарат, где происходит контролируемая реакция ядерного распада, основанная на цепном принципе. Данный принцип заключается в следующем. Ядра урана, бомбардируемые нейтронами, распадаются и образуют несколько новых нейтронов, которые, в свою очередь, вызывают деление следующих ядер. При таком процессе количество нейтронов быстро увеличивается. Отношение числа нейтронов в одной фазе деления к количеству нейтронов предыдущей фазы ядерного распада называется коэффициентом размножения.

Чтобы ядерная реакция была подконтрольной, и необходим атомный реактор, который используется на АЭС, подводных лодках, в экспериментальных ядерных установках и т.д. Неконтролируемая ядерная реакция неизбежно приводит к взрыву колоссальной разрушительной силы. Такой тип цепной реакции применяется исключительно в взрыв которых и является целью ядерного распада.

Атомный реактор, в котором высвобождившиеся нейтроны движутся с огромной скоростью, с целью контроля реакции оснащается специальными материалами, поглощающими часть энергии элементарных частиц. Подобные материалы, обладающие способностью снижать скорость и уменьшать инерцию движения нейтронов, называются замедлителями ядерной реакции.

Состоит в следующем. Внутренние полости реактора заполнены дистиллированной водой, циркулирующей внутри специальных трубок. Атомный реактор автоматически включается при удалении из активной зоны графитовых стержней, поглощающих часть энергии нейтронов. С началом цепной реакции происходит высвобождение колоссального количества тепловой энергии, которая, циркулируя в активной зоне реактора, достигает При этом вода нагревается до температуры 320 о С.

Затем вода первого контура, двигаясь внутри по трубкам парогенератора, отдает тепловую энергию, принятую от активной зоны реактора, воде второго контура, при этом не соприкасаясь с ней, что исключает попадание радиоактивных частиц за пределы реакторного зала.

Дальнейший процесс ничем не отличается от происходящего на любой тепловой электростанции - вода второго контура, превратившаяся в пар, придает вращение турбинам. А турбины активируют гигантские электрогенераторы, которые и вырабатывают электрическую энергию.

Атомный реактор не является сугубо человеческим изобретением. Поскольку во всей Вселенной действуют одинаковые законы физики, энергия ядерного распада необходима для поддержания стройной структуры космоса и жизни на Земле. Естественный природный ядерный реактор представляют собой звезды. И одна из них - Солнце, которое своей энергией создало все условия для зарождения жизни на нашей планете.

Ядерные реакторы.

Ядерный (атомный) реактор - это устройство, предназначенное для организации управляемой самоподдерживающейся цепной реакции деления атомов, которая сопровождается выделением большого количества энергии.

Ядерные реакторы являются основным элементом современных атомных электростанций.

Первые ядерные реакторы.

Первый ядерный реактор построен и запущен в декабре 1942 года в США под руководством Э. Ферми.

Первым реактором, построенным за пределами США, стал ZEEP, запущенный в Канаде 5 сентября 1945 года.

В Европе первым ядерным реактором стала установка Ф-1, заработавшая 25 декабря 1946 года в Москве под руководством И. В. Курчатова.

К 1978 году в мире работало уже около сотни ядерных реакторов различных типов.

История создания ядерных реакторов.

Научная работа в Германии.

Теоретическую группу «Урановый проект» нацистской Германии, работающую в Обществе кайзера Вильгельма, возглавлял Вайцзеккер, но лишь формально. Фактическим лидером был Гейзенберг, разрабатывающий теоретические основы цепной реакции, Вайцзеккер же с группой участников сосредоточился на создании «урановой машины» - первого реактора.

Поздней весной 1940 года один из учёных группы - Хартек - провёл первый опыт с попыткой создания цепной реакции, используя оксид урана и твёрдый графитовый замедлитель. Однако имеющегося в наличии делящегося материала не хватило для достижения этой цели.

В 1941 году в Лейпцигском университете участником группы Гейзенберга Дёпелем был построен стенд с тяжеловодным замедлителем, в экспериментах на котором к маю 1942 года удалось достичь производства нейтронов в количестве, превышающем их поглощение.

Полноценной цепной реакции немецким учёным удалось достичь в феврале 1945 года в эксперименте, проводимом в горной выработке близ Хайгерлоха. Однако спустя несколько недель ядерная программа Германии прекратила существование.

Научная работа в США.

Цепная реакция деления ядер (кратко - цепная реакция) была впервые осуществлена американскими учеными в декабре 1942 года. Группа физиков Чикагского университета, возглавляемая Э. Ферми, создала первый в мире ядерный реактор, названный «Чикагской поленницей» (Chicago Pile-1, CP-1). Он состоял из графитовых блоков, между которыми были расположены шары из природного урана и его диоксида. Быстрые нейтроны, появляющиеся после деления ядер 235U, замедлялись графитом до тепловых энергий, а затем вызывали новые деления ядер. Реакторы, подобные СР-1, в которых основная доля делений происходит под действием тепловых нейтронов, называют реакторами на тепловых нейтронах. В их состав входит очень много замедлителя по сравнению с ядерным топливом.

Научная работа в СССР.

В СССР теоретические и экспериментальные исследования особенностей пуска, работы и контроля реакторов были проведены группой физиков и инженеров под руководством академика И. В. Курчатова.

Первый советский реактор Ф-1 был построен в Лаборатории № 2 АН СССР (Москва). Этот реактор был выведен в критическое состояние 25 декабря 1946 года. Реактор Ф-1 был собран из графитовых блоков и имел форму шара диаметром примерно 7,5 м. В центральной части шара диаметром 6 м по отверстиям в графитовых блоках размещены урановые стержни. Реактор Ф-1, как и реактор CP-1, не имел системы охлаждения, поэтому работал на очень малых уровнях мощности (Средняя мощность не превышала 20 Вт. Для сравнения, первый американский реактор CP-1 редко превышал 1 Вт мощности). Результаты исследований на реакторе Ф-1 стали основой проектов более сложных по конструкции промышленных реакторов. В 1948 году введён в действие реактор И-1 (по другим данным он назывался А-1) по производству плутония.

27 июня 1954 года начала работать первая в мире атомная электростанция электрической мощностью 5 МВт в городе Обнинске.

Физические принципы работы ядерного реактора.

Схема ядерного реактора на тепловых нейтронах:

1 - Управляющий стержень.

2 - Радиационная защита.

3 - Теплоизоляция.

4 - Замедлитель.

5 - Ядерное топливо.

6 - Теплоноситель.

Текущее состояние ядерного реактора можно охарактеризовать эффективным коэффициентом размножения нейтронов k или реактивностью ρ, которые связаны следующим соотношением:

Таким образом, возможны следующие варианты развития цепной реакции деления атомов:

1. ρ<0, Кэф

2. ρ>0, Кэф>1 - реактор надкритичен, интенсивность реакции и мощность реактора увеличиваются.

3. ρ=0, Кэф=1 - реактор критичен, интенсивность реакции и мощность реактора постоянны.

Классификация ядерных реакторов.

По назначению и характеру использования ядерные реакторы делятся на:

Энергетические реакторы, предназначенные для получения электрической и тепловой энергии, используемой в энергетике, а также для опреснения морской воды (реакторы для опреснения также относят к промышленным). Основное применение такие реакторы получили на атомных электростанциях. Тепловая мощность современных энергетических реакторов достигает 5 ГВт.

Транспортные реакторы, предназначенные для снабжения энергией двигателей транспортных средств. Наиболее широкие группы применения - морские транспортные реакторы, применяющиеся на подводных лодках и различных надводных судах, а также реакторы, применяющиеся в космической технике.

Экспериментальные реакторы, предназначенные для изучения различных физических величин, значение которых необходимо для проектирования и эксплуатации ядерных реакторов. Мощность таких реакторов обычно не превышает нескольких кВт.

Исследовательские реакторы, в которых потоки нейтронов и гамма-квантов, создаваемые в активной зоне, используются для исследований в области ядерной физики, физики твёрдого тела, радиационной химии, биологии, для испытания материалов, предназначенных для работы в интенсивных нейтронных потоках (в том числе деталей ядерных реакторов), для производства изотопов. Мощность исследовательских реакторов обычно не более 100 МВт. Выделяющаяся энергия, как правило, не используется.

Промышленные (оружейные, изотопные) реакторы, используемые для наработки изотопов, применяющихся в различных областях. Наиболее широко используются для производства ядерных оружейных материалов, например 239Pu. Также к промышленным ядерным реакторам относят реакторы, использующиеся для опреснения морской воды.

Часто ядерные реакторы применяются для решения двух и более различных задач, в таком случае они называются многоцелевыми. Например, некоторые энергетические реакторы, особенно на заре атомной энергетики, предназначались, в основном, для экспериментов. Реакторы на быстрых нейтронах могут быть одновременно и энергетическими, и нарабатывать изотопы. Промышленные реакторы кроме своей основной задачи часто вырабатывают электрическую и тепловую энергию.

Ядерный реактор. Атомный реактор.

В истории создания ядерных реакторов можно проследить три этапа. На первом этапе определились необходимые и достаточные условия протекания самоподдерживающейся цепной ядерной реакции деления. На втором этапе были установлены все физические эффекты, способствующие и препятствующие протеканию самоподдерживающейся цепной ядерной реакции деления, т.е. ускоряющие и замедляющие этот процесс. И, наконец, были проведены количественные расчеты, касающиеся конструкции реактора и протекающих в нем процессов.

Создание ядерных реакторов было решением одной из составных задач общей атомной проблемы.

Первый в мире реактор СР-1 (Chicago Physics) был спроектирован и сконструирован Э.Ферми в сотрудничестве с Андерсоном, Цинном, Л. Вудс и Дж. Вайлем и размещался в теннисном зале под трибунами стадиона Чикагского университета. Реактор начал работать 2 декабря 1942 г. при расчетной начальной мощности 0,5 Вт. В первый урановый реактор СР-1 было загружено 6 т металлического урана и некоторое количество (точно не известно) окиси урана из-за недостатка урана в чистом виде.

Реактор должен был иметь сферическую форму и составлялся из горизонтальных слоев блочного графита, которые располагались между подобными же слоями из перемежающихся блоков графита и урана, охлаждаемых воздухом. Критическое состояние реактора, при котором потеря нейтронов компенсировалась их производством (созданием), было достигнуто, когда сферу построили на три четверти, в результате чего реактор так и не получил окончательной формы правильного шара.

Через 12 дней мощность была доведена до 200 Вт и дальнейшее повышение мощности сочли рискованным из-за генерированного установкой опасного излучения. Реактор переместили за пределы города в Аргоннскую лабораторию, где он был снова смонтирован и снабжен защитным экраном.

Реактор регулировался вручную при помощи кадмиевых стержней, поглощающих избыток нейтронов и расположенных в специальных каналах. Кроме того, были предусмотрены два аварийных стержня и стержень автоматического управления.

Первая опытная установка позволила провести экспериментальное исследование процесса получения плутония, которое привело к заключению, что этот способ дает реальную возможность его изготовления в количествах, достаточных для создания атомной бомбы. В 1943 г. в Аргоннской национальной лаборатории для экспериментальных исследований был построен точно такой же реактор СР-2 (рис.17.1), но с критическим размером в форме куба, а в 1944 г. – еще один реактор СР-3 (рис. 17.2), в котором замедлителем служила тяжелая вода, что позволило значительно уменьшить размеры реактора по сравнению с предыдущими.

Из-за отсутствия системы охлаждения максимальная безопасная мощность реактора составляла 200 Вт, но на короткое время мощность можно было повышать до 100 кВт. В реакторе использовались пять управляющих стержней длиной 5,6 м из бронзы, покрытые кадмием. Три из этих стержней были аварийными, один стержень служил для грубой регулировки и еще один для точной регулировки потока нейтронов и мощности реактора.

В конце 1945 г. в Москве на территории Лаборатории № 2 АН СССР было начато строительство здания для физического реактора Ф-1, а в начале 1946 г. началось проектирование первого промышленного реактора и связанного с ним плутониевого комбината в Челябинске-40. В декабре 1946 г. на исследовательском уран-графитовом реакторе Ф-1 под руководством И.В. Курчатова была впервые в Европе осуществлена самоподдерживающая цепная реакция. Пуск реактора Ф-1, который до сих пор служит науке, дал возможность измерить необходимые ядерные константы, выбрать оптимальную конструкцию первого промышленного реактора, исследовать вопросы регулирования и радиационной безопасности.

В историю физики ХХ века вошел и первый в Европе ядерный реактор, созданный в СССР и испытанный лично И.В. Курчатовым в декабре 1946 года. Его мощность достигала уже 4000 кВт, что давало возможность на базе полученного опыта создавать промышленные реакторы. Сам реактор располагался в бетонированном котловане, на дно которого были уложены восемь слоев графитовых брусков. Над ними укладывались слои с отверстиями-гнездами, куда были вставлены блоки из урана. Были также сделаны три канала для кадмиевых стержней, обеспечивающих регулирование реакции и ее аварийную остановку, и ряд горизонтальных каналов различной формы и размеров для измерительной аппаратуры и экспериментальных целей. Общее число слоев из графитовых брусков составило шестьдесят два.

В 1947 году на этом реакторе удалось получить первые дозы не встречающегося в природе плутония, являющегося, подобно урану, ядерным горючим, притом в количествах, достаточных для изучения основных физических характеристик его ядра. Первый в СССР промышленный реактор для получения плутония был запущен Курчатовым в июне 1948 года.

В середине 40-х годов ХХ века в Лос-Аламосской научной лаборатории (США) была поставлена задача создания опытного быстрого реактора с плутониевым топливом, демонстрирующего возможность производства электроэнергии. Этот реактор под названием «Клементина» имел объём активной зоны, состоящей из металлического плутония, 2,5 л и охлаждался ртутью. Сборка реактора началась в 1946 г., критичность была достигнута в ноябре 1946 г. Энергетический пуск состоялся в марте 1949 г. Реактор работал на мощности 25 кВт (тепл.).

В рамках Манхэттенского проекта (секретного плана создания американской бомбы) вся работа по разделению изотопов урана была поручена лаборатории известного американского физика Э. Лоуренса. В своем докладе правительству США в июле 1941 г. Лоуренс писал: «Открылась новая чрезвычайно важная возможность для использования цепной реакции с неразделёнными изотопами [урана]. По-видимому, если бы цепная реакция была осуществлена, можно было бы вести её … в течение некоторого периода времени специально для производства элемента с атомным номером 94 [плутония]… Если бы имелись в распоряжении… большие количества этого элемента, то, вероятно, можно было бы осуществить цепную реакцию на быстрых нейтронах. В такой реакции энергия освобождалась бы со скоростью взрыва, и соответствующая система могла бы быть охарактеризована… как «сверхбомба»».

Реактор «Клементина» был первым реактором на быстрых нейтронах, а также первым, в котором в качестве топлива использовался плутоний-239. Активная зона в виде цилиндра высотой 15 см и диаметром 15 см состояла из вертикальных топливных стержней в стальной оболочке. Замедлитель, естественно, отсутствовал. Отражателем служили металлический уран и сталь. Ртутный теплоноситель обладал пренебрежимо малым сечением захвата медленных нейтронов. Управление реактором осуществлялось при помощи стержней, удаляющих некоторое количество урана из отражателя, так как бор или кадмий, используемые в реакторах на тепловых нейтронах, непригодны для реакторов на быстрых нейтронах.

В Аргоннской национальной лаборатории (США) независимо от описанных исследований проводились работы по созданию экспериментального реактора-размножителя EBR-1 на быстрых нейтронах. Главной целью этого проекта была проверка концепции атомной электростанции с реактором на быстрых нейтронах в качестве энергетического блока. К созданию реактора приступили в 1951 г., а критичность была достигнута в августе 1951 г. В декабре 1951 г. впервые за счёт ядерной энергии был получен электрический ток при мощности реактора 200 кВт (эл.). Топливные элементы реактора представляли собой трубки из нержавеющей стали, содержащие высокообогащенный металлический уран, охлаждение активной зоны осуществлялось прокачиванием через нее сплава натрия и калия (рис.17.3). Отражатель состоял из двух частей: нескольких стержней природного металлического урана, окружающих активную зону, и нескольких клинообразных блоков из того же материала. Управление реактором осуществлялось введением стержней металлического урана во внешний отражатель и выведением их из него.

Реактор одновременно вырабатывал энергию, выделяющуюся при делении под действием быстрых нейтронов, и воспроизводил делящийся материал. Строго говоря, реактор-размножитель должен использовать тот же делящийся материал, который в нем производится, например плутоний-239 в реакторах с ураном-238 в качестве сырья для производства вторичного топливного материала (плутония). Однако в настоящее время в качестве делящегося материала во многих реакторах на быстрых нейтронах используют уран-235. В реакторах на быстрых нейтронах теплоноситель не должен содержать элементов с малым массовым числом, так как они будут замедлять нейтроны. Интенсивный отвод тепла из активной зоны малого размера требует теплоносителя с исключительно высокими теплоотводящими свойствами.

Только одно вещество – жидкий натрий – удовлетворяет этим условиям.

Анализ топливных материалов отражателя реактора EBR-1 после его работы в течение некоторого времени показал, что достигнутый коэффициент воспроизводства, т.е. отношение количества полученного плутония-239 к количеству израсходованного урана-235, несколько превышает 100%. Поскольку условия в реакторе не были идеальными, то посчитали, что воспроизводство плутония-239 должно быть практически выгодно. Это было подтверждено в Великобритании экспериментами на реакторе на быстрых нейтронах очень малой мощности (2 Вт), в котором топливом служил плутоний-239. Было обнаружено, что на каждое разделившееся ядро плутония приходится примерно два вновь образовавшихся. Таким образом, выигрыш при воспроизводстве получается довольно значительным. В конечном счете таким реакторам должна принадлежать главная роль в программе развития ядерной энергетики.

Устройство и принцип работы

Механизм энерговыделения

Превращение вещества сопровождается выделением свободной энергии лишь в том случае, если вещество обладает запасом энергий. Последнее означает, что микрочастицы вещества находятся в состоянии с энергией покоя большей, чем в другом возможном, переход в которое существует. Самопроизвольному переходу всегда препятствует энергетический барьер , для преодоления которого микрочастица должна получить извне какое-то количество энергии - энергии возбуждения. Экзоэнергетическая реакция состоит в том, что в следующем за возбуждением превращении выделяется энергии больше, чем требуется для возбуждения процесса. Существуют два способа преодоления энергетического барьера: либо за счёт кинетической энергии сталкивающихся частиц, либо за счёт энергии связи присоединяющейся частицы.

Если иметь в виду макроскопические масштабы энерговыделения, то необходимую для возбуждения реакций кинетическую энергию должны иметь все или сначала хотя бы некоторая доля частиц вещества. Это достижимо только при повышении температуры среды до величины, при которой энергия теплового движения приближается к величине энергетического порога, ограничивающего течение процесса. В случае молекулярных превращений, то есть химических реакций, такое повышение обычно составляет сотни кельвинов , в случае же ядерных реакций - это минимум 10 7 из-за очень большой высоты кулоновских барьеров сталкивающихся ядер. Тепловое возбуждение ядерных реакций осуществлено на практике только при синтезе самых лёгких ядер, у которых кулоновские барьеры минимальны (термоядерный синтез).

Возбуждение присоединяющимися частицами не требует большой кинетической энергии, и, следовательно, не зависит от температуры среды, поскольку происходит за счёт неиспользованных связей, присущих частицам сил притяжения. Но зато для возбуждения реакций необходимы сами частицы. И если опять иметь в виду не отдельный акт реакции, а получение энергии в макроскопических масштабах, то это возможно лишь при возникновении цепной реакции. Последняя же возникает, когда возбуждающие реакцию частицы снова появляются, как продукты экзоэнергетической реакции.

Конструкция

Любой ядерный реактор состоит из следующих частей:

  • Активная зона с ядерным топливом и замедлителем ;
  • Отражатель нейтронов , окружающий активную зону;
  • Система регулирования цепной реакции , в том числе аварийная защита ;
  • Радиационная защита;
  • Система дистанционного управления.

Физические принципы работы

См. также основные статьи:

Текущее состояние ядерного реактора можно охарактеризовать эффективным коэффициентом размножения нейтронов k или реактивностью ρ , которые связаны следующим соотношением:

Для этих величин характерны следующие значения:

  • k > 1 - цепная реакция нарастает во времени, реактор находится в надкритичном состоянии, его реактивность ρ > 0;
  • k < 1 - реакция затухает, реактор - подкритичен , ρ < 0;
  • k = 1, ρ = 0 - число делений ядер постоянно, реактор находится в стабильном критическом состоянии.

Условие критичности ядерного реактора:

, где

Обращение коэффициента размножения в единицу достигается сбалансированием размножения нейтронов с их потерями. Причин потерь фактически две: захват без деления и утечка нейтронов за пределы размножающей среды.

Очевидно, что k < k 0 , поскольку в конечном объёме вследствие утечки потери нейтронов обязательно больше, чем в бесконечном. Поэтому, если в веществе данного состава k 0 < 1, то цепная самоподдерживающаяся реакция невозможна как в бесконечном, так и в любом конечном объёме. Таким образом, k 0 определяет принципиальную способность среды размножать нейтроны.

k 0 для тепловых реакторов можно определить по так называемой «формуле 4-х сомножителей»:

, где
  • η - выход нейтронов на два поглощения.

Объёмы современных энергетических реакторов могут достигать сотен м³ и определяются главным образом не условиями критичности, а возможностями теплосъёма.

Критический объём ядерного реактора - объём активной зоны реактора в критическом состоянии. Критическая масса - масса делящегося вещества реактора, находящегося в критическом состоянии.

Наименьшей критической массой обладают реакторы, в которых топливом служат водные растворы солей чистых делящихся изотопов с водяным отражателем нейтронов. Для 235 U эта масса равна 0,8 кг, для 239 Pu - 0,5 кг. Широко известно, однако, что критическая масса для реактора LOPO (первый в мире реактор на обогащённом уране), имевшего отражатель из окиси бериллия, составляла 0,565 кг, несмотря на то, что степень обогащения по изотопу 235 была лишь немногим более 14 %. Теоретически, наименьшей критической массой обладает , для которого эта величина составляет всего 10 г.

С целью уменьшения утечки нейтронов, активной зоне придают сферическую или близкую к сферической форму, например короткого цилиндра или куба, так как эти фигуры обладают наименьшим отношением площади поверхности к объёму.

Несмотря на то, что величина (e - 1) обычно невелика, роль размножения на быстрых нейтронах достаточно велика, поскольку для больших ядерных реакторов (К ∞ - 1) << 1. Без этого процесса было бы невозможным создание первых графитовых реакторов на естественном уране.

Для начала цепной реакции обычно достаточно нейтронов, рождаемых при спонтанном делении ядер урана. Возможно также использование внешнего источника нейтронов для запуска реактора, например, смеси и , или других веществ.

Иодная яма

Основная статья: Иодная яма

Иодная яма - состояние ядерного реактора после его выключения, характеризующееся накоплением короткоживущего изотопа ксенона . Этот процесс приводит к временному появлению значительной отрицательной реактивности , что, в свою очередь, делает невозможным вывод реактора на проектную мощность в течение определённого периода (около 1-2 суток).

Классификация

По назначению

По характеру использования ядерные реакторы делятся на :

  • Энергетические реакторы , предназначенные для получения электрической и тепловой энергии, используемой в энергетике , а также для опреснения морской воды (реакторы для опреснения также относят к промышленным). Основное применение такие реакторы получили на атомных электростанциях . Тепловая мощность современных энергетических реакторов достигает 5 ГВт . В отдельную группу выделяют:
    • Транспортные реакторы , предназначенные для снабжения энергией двигателей транспортных средств. Наиболее широкие группы применения - морские транспортные реакторы, применяющиеся на подводных лодках и различных надводных судах, а также реакторы, применяющиеся в космической технике .
  • Экспериментальные реакторы , предназначенные для изучения различных физических величин, значение которых необходимо для проектирования и эксплуатации ядерных реакторов; мощность таких реакторов не превышает нескольких кВт .
  • Исследовательские реакторы , в которых потоки нейтронов и гамма-квантов , создаваемые в активной зоне, используются для исследований в области ядерной физики , физики твёрдого тела , радиационной химии , биологии , для испытания материалов, предназначенных для работы в интенсивных нейтронных потоках (в т. ч. деталей ядерных реакторов), для производства изотопов. Мощность исследовательских реакторов не превосходит 100 МВт. Выделяющаяся энергия, как правило, не используется.
  • Промышленные (оружейные, изотопные) реакторы , используемые для наработки изотопов , применяющихся в различных областях. Наиболее широко используются для производства ядерных оружейных материалов, например 239 Pu . Также к промышленным относят реакторы, использующиеся для опреснения морской воды .

Часто реакторы применяются для решения двух и более различных задач, в таком случае они называются многоцелевыми . Например, некоторые энергетические реакторы, особенно на заре атомной энергетики, предназначались, в основном, для экспериментов. Реакторы на быстрых нейтронах могут быть одновременно и энергетическими, и нарабатывать изотопы. Промышленные реакторы кроме своей основной задачи часто вырабатывают электрическую и тепловую энергию.

По спектру нейтронов

  • Реактор на тепловых (медленных) нейтронах («тепловой реактор»)
  • Реактор на быстрых нейтронах («быстрый реактор»)

По размещению топлива

  • Гетерогенные реакторы , где топливо размещается в активной зоне дискретно в виде блоков, между которыми находится замедлитель;
  • Гомогенные реакторы , где топливо и замедлитель представляют однородную смесь (гомогенную систему).

В гетерогенном реакторе топливо и замедлитель могут быть пространственно разнесены, в частности, в полостном реакторе замедлитель-отражатель окружает полость с топливом, не содержащим замедлителя. С ядерно-физической точки зрения критерием гомогенности/гетерогенности является не конструктивное исполнение, а размещение блоков топлива на расстоянии, превышающем длину замедления нейтронов в данном замедлителе. Так, реакторы с так называемой «тесной решёткой» рассчитываются как гомогенные, хотя в них топливо обычно отделено от замедлителя.

Блоки ядерного топлива в гетерогенном реакторе называются тепловыделяющими сборками (ТВС), которые размещаются в активной зоне в узлах правильной решётки, образуя ячейки .

По виду топлива

  • изотопы урана 235, 238, 233 ( 235 U , 238 U , 233 U)
  • изотоп плутония 239 ( 239 Pu), также изотопы 239-242 Pu в виде смеси с 238 U (MOX-топливо)
  • изотоп тория 232 (232 Th) (посредством преобразования в 233 U)

По степени обогащения:

  • природный уран
  • слабо обогащённый уран
  • высоко обогащённый уран

По химическому составу:

  • металлический U
  • UC (карбид урана) и т. д.

По виду теплоносителя

  • Газ, (см. Графито-газовый реактор)
  • D 2 O (тяжёлая вода , см. Тяжеловодный ядерный реактор , CANDU)

По роду замедлителя

  • С (графит , см. Графито-газовый реактор , Графито-водный реактор)
  • H 2 O (вода, см. Легководный реактор , Водо-водяной реактор , ВВЭР)
  • D 2 O (тяжёлая вода, см. Тяжеловодный ядерный реактор , CANDU)
  • Гидриды металлов
  • Без замедлителя (см. Реактор на быстрых нейтронах)

По конструкции

По способу генерации пара

  • Реактор с внешним парогенератором (См. Водо-водяной реактор , ВВЭР)

Классификация МАГАТЭ

  • PWR (pressurized water reactors) - водо-водяной реактор (реактор с водой под давлением);
  • BWR (boiling water reactor) - кипящий реактор ;
  • FBR (fast breeder reactor) - реактор-размножитель на быстрых нейтронах ;
  • GCR (gas-cooled reactor) - газоохлаждаемый реактор;
  • LWGR (light water graphite reactor) - графито-водный реактор
  • PHWR (pressurised heavy water reactor) - тяжеловодный реактор

Наиболее распространёнными в мире являются водо-водяные (около 62 %) и кипящие (20 %) реакторы.

Материалы реакторов

Материалы, из которых строят реакторы, работают при высокой температуре в поле нейтронов , γ-квантов и осколков деления. Поэтому для реакторостроения пригодны не все материалы, применяемые в других отраслях техники. При выборе реакторных материалов учитывают их радиационную стойкость, химическую инертность, сечение поглощения и другие свойства.

Радиационная нестойкость материалов меньше сказывается при высоких температурах. Подвижность атомов становится настолько большой, что вероятность возвращения выбитых из кристаллической решётки атомов на своё место или рекомбинация водорода и кислорода в молекулу воды заметно увеличивается. Так, радиолиз воды несущественен в энергетических некипящих реакторах (например, ВВЭР), в то время как в мощных исследовательских реакторах выделяется значительное количество гремучей смеси. В реакторах есть специальные системы для её сжигания.

Реакторные материалы контактируют между собой (оболочка ТВЭЛа с теплоносителем и ядерным топливом , тепловыделяющие кассеты - с теплоносителем и замедлителем и т. д.). Естественно, что контактирующие материалы должны быть химически инертными (совместимыми). Примером несовместимости служат уран и горячая вода, вступающие в химическую реакцию.

У большинства материалов прочностные свойства резко ухудшаются с увеличением температуры. В энергетических реакторах конструкционные материалы работают при высоких температурах. Это ограничивает выбор конструкционных материалов, особенно для тех деталей энергетического реактора, которые должны выдерживать высокое давление.

Выгорание и воспроизводство ядерного топлива

В процессе работы ядерного реактора из-за накопления в топливе осколков деления изменяется его изотопный и химический состав, происходит образование трансурановых элементов, главным образом изотопов . Влияние осколков деления на реактивность ядерного реактора называется отравлением (для радиоактивных осколков) и зашлаковыванием (для стабильных изотопов).

Основная причина отравления реактора - , обладающий наибольшим сечением поглощения нейтронов (2,6·10 6 барн). Период полураспада 135 Xe T 1/2 = 9,2 ч; выход при делении составляет 6-7 %. Основная часть 135 Xe образуется в результате распада (T 1/2 = 6,8 ч). При отравлении К эф изменяется на 1-3 %. Большое сечение поглощения 135 Xe и наличие промежуточного изотопа 135 I приводят к двум важным явлениям:

  1. К увеличению концентрации 135 Xe и, следовательно, к уменьшению реактивности реактора после его остановки или снижения мощности («иодная яма»), что делает невозможным кратковременные остановки и колебания выходной мощности. Данный эффект преодолевается введением запаса реактивности в органах регулирования. Глубина и продолжительность иодной ямы зависят от потока нейтронов Ф: при Ф = 5·10 18 нейтрон/(см²·сек) продолжительность йодной ямы ˜ 30 ч, а глубина в 2 раза превосходит стационарное изменение К эф, вызванное отравлением 135 Xe.
  2. Из-за отравления могут происходить пространственно-временные колебания нейтронного потока Ф, а, следовательно, и мощности реактора. Эти колебания возникают при Ф > 10 18 нейтронов/(см²·сек) и больших размерах реактора. Периоды колебаний ˜ 10 ч.

При делении ядер возникает большое число стабильных осколков, которые различаются сечениями поглощения по сравнению с сечением поглощения делящегося изотопа. Концентрация осколков с большим значением сечения поглощения достигает насыщения в течение нескольких первых суток работы реактора. Главным образом это ТВЭЛы разных «возрастов».

В случае полной замены топлива, реактор имеет избыточную реактивность, которую нужно компенсировать, тогда как во втором случае компенсация требуется только при первом пуске реактора. Непрерывная перегрузка позволяет повысить глубину выгорания, так как реактивность реактора определяется средними концентрациями делящихся изотопов.

Масса загруженного топлива превосходит массу выгруженного за счёт «веса» выделившейся энергии. После остановки реактора, сначала главным образом за счёт деления запаздывающими нейтронами, а затем, через 1-2 мин, за счёт β- и γ-излучения осколков деления и трансурановых элементов, в топливе продолжается выделение энергии. Если реактор работал достаточно долго до момента остановки, то через 2 мин после остановки выделение энергии составляет около 3 %, через 1 ч - 1 %, через сутки - 0,4 %, через год - 0,05 % от первоначальной мощности.

Отношение количества делящихся изотопов Pu, образовавшихся в ядерном реакторе, к количеству выгоревшего 235 U называется коэффициентом конверсии K K . Величина K K увеличивается при уменьшении обогащения и выгорания. Для тяжеловодного реактора на естественном уране, при выгорании 10 ГВт·сут/т K K = 0,55, а при небольших выгораниях (в этом случае K K называется начальным плутониевым коэффициентом ) K K = 0,8. Если ядерный реактор сжигает и производит одни и те же изотопы (реактор-размножитель), то отношение скорости воспроизводства к скорости выгорания называется коэффициентом воспроизводства К В. В ядерных реакторах на тепловых нейтронах К В < 1, а для реакторов на быстрых нейтронах К В может достигать 1,4-1,5. Рост К В для реакторов на быстрых нейтронах объясняется главным образом тем, что, особенно в случае 239 Pu, для быстрых нейтронов g растёт, а а падает.

Управление ядерным реактором

Управление ядерным реактором возможно только благодаря тому, что часть нейтронов при делении вылетает из осколков с запаздыванием , которое может составить от нескольких миллисекунд до нескольких минут.

Для управления реактором используют поглощающие стержни , вводимые в активную зону, изготовленные из материалов, сильно поглощающих нейтроны (в основном , и некоторые др.) и/или раствор борной кислоты , в определённой концентрации добавляемый в теплоноситель (борное регулирование). Движение стержней управляется специальными механизмами, приводами, работающими по сигналам от оператора или аппаратуры автоматического регулирования нейтронного потока.

На случай различных аварийных ситуаций в каждом реакторе предусмотрено экстренное прекращение цепной реакции , осуществляемое сбрасыванием в активную зону всех поглощающих стержней - система аварийной защиты .

Остаточное тепловыделение

Важной проблемой, непосредственно связанной с ядерной безопасностью , является остаточное тепловыделение. Это специфическая особенность ядерного топлива, заключающаяся в том, что, после прекращения цепной реакции деления и обычной для любого энергоисточника тепловой инерции, выделение тепла в реакторе продолжается ещё долгое время, что создаёт ряд технически сложных проблем.

Остаточное тепловыделение является следствием β- и γ- распада продуктов деления , которые накопились в топливе за время работы реактора. Ядра продуктов деления вследствие распада переходят в более стабильное или полностью стабильное состояние с выделением значительной энергии.

Хотя мощность остаточного тепловыделения быстро спадает до величин, малых по сравнению со стационарными значениями, в мощных энергетических реакторах она значительна в абсолютных величинах. По этой причине остаточное тепловыделение влечёт необходимость длительное время обеспечивать теплоотвод от активной зоны реактора после его остановки. Эта задача требует наличия в конструкции реакторной установки систем расхолаживания с надёжным электроснабжением, а также обуславливает необходимость длительного (в течение 3-4 лет) хранения отработавшего ядерного топлива в хранилищах со специальным температурным режимом - бассейнах выдержки, которые обычно располагаются в непосредственной близости от реактора .

См. также

  • Перечень атомных реакторов, спроектированных и построенных в Советском Союзе

Литература

  • Левин В. Е. Ядерная физика и ядерные реакторы. 4-е изд. - М.: Атомиздат, 1979.
  • Шуколюков А. Ю. «Уран. Природный ядерный реактор». «Химия и Жизнь» № 6, 1980 г., с. 20-24

Примечания

  1. «ZEEP - Canada’s First Nuclear Reactor» , Canada Science and Technology Museum.
  2. Грешилов А. А., Егупов Н. Д., Матущенко А. М. Ядерный щит. - М .: Логос, 2008. - 438 с. -

Ядерный реактор, принцип действия, работа ядерного реактора.

Каждый день мы используем электричесто и не задумываемся над тем, как оно производится и как оно к нам попало. А тем не менее это одна из самых важных частей современной цивилизации. Без электричества не было бы ничего – ни света, ни тепла, ни движения.

Все знают про то, что электричевто вырабатывается на электростанциях, в том числе и на атомных. Сердце каждой АЭС – это ядерный реактор . Именно его мы будем разбирать в этой статье.

Ядерный реактор , устройство в котором проистекает управляемая цепная ядерная реакция с выделением тепла. В основном ти устройства используются для выработки электроэнергии и в качестве привода больших кораблей. Для того, чтобы представить себе, мощность и экономичность ядерных реакторов можно привести пример. Там где среднему ядерному реактору потребуется 30 килограмм урана, средней ТЭЦ потребуется 60 вагонов угля или 40 цистерн мазута.

Прообраз ядерного реактора был построен в декабре 1942 года в США под руководством Э. Ферми. Это была так называемая “Чикагская стопка”. Chicago Pile (впоследствии слово “Pile” наряду с другими значениями стало обозначать ядерный реактор). Такое название дали ему из-за того, что он напоминал собой большую стопку графитовых блоков, положенных один на другой.

Между блоками была помещены шарообразные “рабочие тела”, из природного урана и его диоксида.

В СССР первый реактор был построен под руководством академика И. В. Курчатова. Реактор Ф-1 был заработал 25 декабря 1946 г. Реактор был в форме шара, имел в диаметре около 7,5 метров. Он не имел системы охлаждения, поэтому работал на очень малых уровнях мощности.

Исследования продолжились и в 27 июня 1954 года вступила в строй первая в мире атомная электростанция мощностью 5 МВт в г. Обнинске.

Принцип действия атомного реактора.

При распаде урана U 235 происходит выделение тепла, сопровождаемое выбросом двух-трех нейтронов. По статистическим данным – 2,5. Эти нейтроны сталкиваются с другими атомами урана U 235 . При столкновении уран U 235 превращается в нестабильный изотоп U 236 , который практически сразу же распадается на Kr 92 и Ba 141 + эти самые 2-3 нейтрона. Распад сопровождается выделением энергии в виде гамма излучения и тепла.

Это и называется цепная реакция. Атомы делятся, количество распадов увеличивается в геометрической прогрессии, что в конечном итоге приводит к молниеносному, по нашим меркам высвобождению огромного количества энергии – происходит атомный взрыв, как последствие неуправляемой цепной реакции.

Однако в ядерном реакторе мы имеем дело с управляемой ядерной реакцией. Как такая становится возможной – рассказано дальше.

Устройство ядерного реактора.

В настоящее время существует два типа ядерных реакторов ВВЭР (водо-водяной энергетический реактор) и РБМК (реактор большой мощности канальный). Отличие в том, что РБМК – кипящий реактор, а ВВЭР использует воду под давлением в 120 атмосфер.

Реактор ВВЭР 1000. 1 - привод СУЗ; 2 - крышка реактора; 3 - корпус реактора; 4 - блок защитных труб (БЗТ); 5 - шахта; 6 - выгородка активной зоны; 7 - топливные сборки (ТВС) и регулирующие стержни;

Каждый ядерный реактор промышленного типа представляет собой котел, сквозь который протекает теплоноситель. Как правило это обычная вода (ок. 75% в мире), жидкий графит (20%) и тяжелая вода (5%). В экспериментальных целях использовался берилий и предполагался углеводород.

ТВЭЛ – (тепловыделяющий элемент). Это стержни в циркониевой оболочке с ниобийным легированием, внутри которых расположены таблетки из диоксида урана.

ТВЭЛ раквтора РБМК. Устройство твэла реактора РБМК: 1 - заглушка; 2 - таблетки диоксида урана; 3 - оболочка из циркония; 4 - пружина; 5 - втулка; 6 - наконечник.

Также ТВЭЛ включает в себя пружинную систему удержания топливных таблеток на одном уровне, что позволяет точнее регулировать глубину погружения/выведения топлива в активную зону. Они собраны в кассеты шестигранной формы, каждая из которых включает в себя несколько десятков ТВЭЛов. По каналам в каждой кассете протекает теплоноситель.

ТВЭЛы в кассете выделены зеленым.

Топливная кассета в сборе.

Активная зона реактора состоит из сотен кассет, поставленных вертикально и объединенных вместе металлической оболочкой – корпусом, играющим также роль отражателем нейтронов. Среди кассет, с регулярной частотой вставлены управляющие стержни и стержни аварийной защиты реактора, которые в случае перегрева призваны заглушить реактор.

Приведем в пример данные по реактору ВВЭР-440:

Управляющие могут перемещаться вверх и вниз погружаясь или наоборот, выходя из активной зоны, где реакция идет интенсивнее всего. Это обеспечивают мощные электромоторы, в совокупности с системой управления.Стержни аварийной защиты призваны заглушить реактор в случает нештатной ситуации, упав в активную зону и поглотив больше количество свободных нейтронов.

Каждый реактор имеет крышку, через которую производится погрузка и выгрузка отработавших и новых кассет.

Поверх корпуса реактора обычно устанавливается теплоизоляция. Следующим барьером идет биологическая защита. Это как правило железобетонный бункер, вход в который закрывается шлюзовой камерой с герметичными дверьми. Биологическая защита призвана не выпустить в атмосферу радиоактивный пар и куски реактора, если все таки произойдет взрыв.

Ядерный взрыв в современных реактора крайне мало возможен. Потому что топливо достаточно мало обогащено, и разделено на ТВЕЛы. Даже если расплавится активная зона, топливо не сможет настолько активно прореагировать. Масимум что может произойти – тепловой взрыв как на Чернобыле, когда давление в реакторе достигло таких величин, что металлический корпус просто разорвало, а крышка реактора, весом в 5000 тонн сделала прыжок с переворотом, пробив крышу реакторного отсека и выпустив пар наружу. Если бы чернобыльская АЭС была оснащена правильной биологической защитой, наподобие сегодняшнего саркофага, то катастрофа обошлась человечеству намного дешевле.

Работа атомной электростанции.

Если в двух словах, то рабобоа выглядит так.

Атомная электростанция. (Кликабельно)

После поступления в активную зону реактора с помощью насосов, вода нагревается с 250 до 300 градусов и выходит с “другой стороны” реактора. Это называется первым контуром. После чего направляется в теплобменник, где встречается со вторым контуром. После чего пар под давлением поступает на лопатки турбин. Турбины вырабатывают электричество.