Абсолютный ноль значение. Абсолютный ноль

> Абсолютный ноль

Изучите, чему равен абсолютный ноль температуры и значение энтропии. Узнайте, чему равна температура абсолютного ноля по шкале Цельсия и Кельвина.

Абсолютный ноль – минимальная температура. Это отметка, при которой энтропия достигает наименьшего значения.

Задача обучения

  • Разобраться в том, почему абсолютный ноль выступает естественным показателем нулевой точки.

Основные пункты

  • Абсолютный ноль выступает универсальным, то есть, вся материя пребывает в основном состоянии при этом показателе.
  • К обладает квантово-механической нулевой энергией. Но в интерпретации кинетическая энергия может быть нулевой, а тепловая исчезает.
  • Максимально низкая температура в лабораторных условиях достигла 10-12 К. Минимальная естественная – 1К (расширение газов в туманности Бумеранг).

Термины

  • Энтропия – мера того, как равномерная энергия располагается в системе.
  • Термодинамика – отрасль в науке, изучающая тепло и его соотношение с энергией и работой.

Абсолютный ноль – минимальная температура, при которой энтропия достигает наименьшего значения. То есть, это самый маленький показатель, который можно наблюдать в системе. Это универсальное понятие и выступает нулевой точкой в системе единиц температуры.

График зависимости давления от температуры для разных газов с постоянным объемом. Заметьте, что все графики экстраполируются к нулевому давлению при одной температуре

Система в абсолютном нуле все еще наделена квантово-механической нулевой энергией. Согласно принципу неопределенности, положение частичек нельзя определить с абсолютной точностью. Если частичка смещается в абсолютном нуле, то все еще обладает минимальным энергетическим запасом. Но в классической термодинамике кинетическая энергия способна быть нулевой, а тепловая исчезает.

Нулевая точка термодинамической шкалы, вроде Кельвина, приравнивается к абсолютному нулю. Международное соглашение установило, что температура абсолютного ноля достигает 0K по шкале Кельвина и -273.15°C по шкале Цельсия. Вещество при минимальных температурных показателях проявляет квантовые эффекты, вроде сверхпроводимости и сверхтекучести. Наиболее низкая температура в лабораторных условиях составляла 10-12 K, а в естественной среде – 1K (быстрое расширение газов в туманности Бумеранг).

Стремительное расширение газов приводит к минимальной наблюдаемой температуре

Выбор в качестве основных точек температурной шкалы точек таяния льда и кипения воды совершенно произволен. Полученная таким образом температурная шкала оказалась неудобной для теоретических исследований.

Опираясь на законы термодинамики, Кельвину удалось построить так называемую абсолютную температурную шкалу (ее в настоящее время называют термодинамической шкалой температур или шкалой Кельвина), совершенно не зависящую ни от природы термометрического тела, ни от избранного термометрического параметра. Однако принцип построения такой шкалы выходит за пределы школьной программы. Мы рассмотрим этот вопрос, используя другие соображения.

Из формулы (2) вытекают два возможных способа установления температурной шкалы: использование изменения давления определенного количества газа при постоянном объеме или изменение объема при постоянном давлении. Такую шкалу называют идеальной газовой шкалой температуры .

Температура, определяемая равенством (2), называется абсолютной температурой . Абсолютная температура Τ не может быть отрицательной, так как слева в равенстве (2) стоят заведомо положительные величины (точнее, она не может быть разных знаков, она может быть либо положительной, либо отрицательной. Это зависит от выбора знака постоянной k . Так как условились температуру тройной точки считать положительной, то абсолютная температура может быть только положительной). Следовательно, наименьшее возможное значение температуры Т = 0 есть температура, когда давление или объем равны нулю.

Предельная температура, при которой давление идеального газа обращается в нуль при фиксированном объеме или объем идеального газа стремится к нулю (т.е. газ как бы должен сжаться в "точку") при неизменном давлении, называется абсолютным нулем . Это самая низкая температура в природе.

Из равенства (3), учитывая, что \(~\mathcal h W_K \mathcal i = \frac{m_0 \mathcal h \upsilon^2 \mathcal i}{2}\) , вытекает физический смысл абсолютного нуля: абсолютный нуль - температура, при которой должно прекратиться тепловое поступательное движение молекул . Абсолютный нуль недостижим.

В Международной системе единиц (СИ) используют абсолютную термодинамическую шкалу температур. За нулевую температуру по этой шкале принят абсолютный нуль. В качестве второй опорной точки принята температура, при которой находятся в динамическом равновесии вода, лед и насыщенный пар, так называемая тройная точка (по шкале Цельсия температура тройной точки равна 0,01 °С). Каждая единица абсолютной температуры, называемая Кельвином (обозначается 1 К), равна градусу Цельсия.

Погружая колбу газового термометра в тающий лед, а затем в кипящую воду при нормальном атмосферном давлении, обнаружили, что давление газа во втором случае в 1,3661 раза больше, чем в первом. Учитывая это и пользуясь формулой (2), можно определить, что температура таяния льда T 0 = 273,15 К.

Действительно, запишем уравнение (2) для температуры T 0 таяния льда и температуры кипения воды (T 0 + 100):

\(~\frac{p_1V}{N} = kT_0 ;\) \(~\frac{p_2V}{N} = k(T_0 + 100) .\)

Разделим второе уравнение на первое, получим:

\(~\frac{p_2}{p_1} = \frac{T_0 + 100}{T_0} .\)

\(~T_0 = \frac{100}{\frac{p_2}{p_1} - 1} = \frac{100}{1,3661 - 1} = 273,15 K.\)

На рисунке 2 схематически показаны шкала Цельсия и термодинамическая шкала.


Что такое абсолютный ноль (чаще — нуль)? Действительно ли эта температура существует где-либо во Вселенной? Можем ли мы охладить что-либо до абсолютного нуля в реальной жизни? Если вам интересно, можно ли обогнать волну холода, давайте исследуем самые дальние пределы холодной температуры…

Что такое абсолютный ноль (чаще — нуль)? Действительно ли эта температура существует где-либо во Вселенной? Можем ли мы охладить что-либо до абсолютного нуля в реальной жизни? Если вам интересно, можно ли обогнать волну холода, давайте исследуем самые дальние пределы холодной температуры…

Даже если вы не физик, вы, вероятно, знакомы с понятием температуры. Температура — это мера измерения количества внутренней случайной энергии материала. Слово «внутренней» очень важно. Бросьте снежок, и хотя основное движение будет достаточно быстрым, снежный ком останется довольно холодным. С другой стороны, если вы посмотрите на молекулы воздуха, летающие по комнате, обычная молекула кислорода жарит со скоростью тысяч километров в час.

Мы обычно умолкаем, когда речь заходит о технических деталях, поэтому специально для экспертов отметим, что температура немного более сложная вещь, чем мы сказали. Истинное определение температуры подразумевает то, сколько энергии вам нужно затратить на каждую единицу энтропии (беспорядка, если хотите более понятное слово). Но давайте опустим тонкости и просто остановимся на том, что случайные молекулы воздуха или воды в толще льда будут двигаться или вибрировать все медленнее и медленнее, по мере понижения температуры.

Абсолютный ноль — это температура -273,15 градусов Цельсия, -459,67 по Фаренгейту и просто 0 по Кельвину. Это точка, где тепловое движение полностью останавливается.


Все останавливается?

В классическом рассмотрении вопроса при абсолютном нуле останавливается все, но именно в этот момент из-за угла выглядывает страшная морда квантовой механики. Одним из предсказаний квантовой механики, которое попортило кровь немалому количеству физиков, является то, что вы никогда не можете измерить точное положение или импульс частицы с совершенной определенностью. Это известно как принцип неопределенности Гейзенберга.

Если бы вы могли охладить герметичную комнату до абсолютного нуля, произошли бы странные вещи (об этом чуть позже). Давление воздуха упало бы практически до нуля, и поскольку давление воздуха обычно противостоит гравитации, воздух сколлапсирует в очень тонкий слой на полу.

Но даже в этом случае, если вы сможете измерить отдельные молекулы, вы обнаружите кое-что любопытное: они вибрируют и вращаются, совсем немного — квантовая неопределенность в работе. Чтобы поставить точки над i: если вы измерите вращение молекул углекислого газа при абсолютном нуле, вы обнаружите, что атомы кислорода облетают углерод со скоростью несколько километров в час — куда быстрее, чем вы предполагали.

Разговор заходит в тупик. Когда мы говорим о квантовом мире, движение теряет смысл. В таких масштабах все определяется неопределенностью, поэтому не то чтобы частицы были неподвижными, вы просто никогда не сможете измерить их так, словно они неподвижны.


Как низко можно пасть?

Стремление к абсолютному нулю по существу встречается с теми же проблемами, что и стремление к скорости света. Чтобы набрать скорость света, понадобится бесконечное количество энергии, а достижение абсолютного нуля требует извлечения бесконечного количества тепла. Оба этих процесса невозможны, если что.

Несмотря на то, что мы пока не добились фактического состояния абсолютного нуля, мы весьма близки к этому (хотя «весьма» в этом случае понятие очень растяжимое; как детская считалочка: два, три, четыре, четыре с половиной, четыре на ниточке, четыре на волоске, пять). Самая низкая температура, когда-либо зарегистрированная на Земле, была зафиксирована в Антарктиде в 1983 году, на отметке -89,15 градусов Цельсия (184K).

Конечно, если вы хотите остыть не по-детски, вам нужно нырнуть в глубины космоса. Вся вселенная залита остатками излучения от Большого Взрыва, в самых пустых регионах космоса — 2,73 градуса по Кельвину, что немногим холоднее, чем температура жидкого гелия, который мы смогли получить на Земле век назад.

Но физики-низкотемпературщики используют замораживающие лучи, чтобы вывести технологию на совершенно новый уровень. Вас может удивить то, что замораживающие лучи принимают форму лазеров. Но как? Лазеры должны сжигать.

Все верно, но у лазеров есть одна особенность — можно даже сказать, ультимативная: весь свет излучается на одной частоте. Обычные нейтральные атомы вообще не взаимодействуют со светом, если частота не настроена точным образом. Если же атом летит к источнику света, свет получает допплеровский сдвиг и выходит на более высокую частоту. Атом поглощает меньшую энергию фотона, чем мог бы. Так что если настроить лазер пониже, быстродвижущиеся атомы будут поглощать свет, а излучая фотон в случайном направлении, будут терять немного энергии в среднем. Если повторять процесс, вы можете охладить газ до температуры меньше одного наноКельвина, миллиардной доли градуса.

Все приобретает более экстремальную окраску. Мировой рекорд самой низкой температуры составляет менее одной десятой миллиарда градуса выше абсолютного нуля. Устройства, которые добиваются этого, захватывают атомы в магнитные поля. «Температура» зависит не столько от самих атомов, сколько от спина атомных ядер.

Теперь, для восстановления справедливости, нам нужно немного пофантазировать. Когда мы обычно представляем себе что-то, замороженной до одной миллиардной доли градуса, вам наверняка рисуется картинка, как даже молекулы воздуха замерзают на месте. Можно даже представить разрушительное апокалиптическое устройство, замораживающее спины атомов.

В конечном счете, если вы действительно хотите испытать низкую температуру, все, что вам нужно, это ждать. Спустя примерно 17 миллиардов лет радиационный фон во Вселенной остынет до 1К. Через 95 миллиардов лет температура составит примерно 0,01К. Через 400 миллиардов лет глубокий космос будет таким же холодным, как самый холодный эксперимент на Земле, и после этого — еще холоднее.

Если вам интересно, почему вселенная остывает так быстро, скажите спасибо нашим старым друзьям: энтропии и темной энергии. Вселенная находится в режиме акселерации, вступая в период экспоненциального роста, который будет продолжаться вечно. Вещи буду замерзать очень быстро.


Какое нам дело?

Все это, конечно, замечательно, да и рекорды побивать тоже приятно. Но в чем смысл? Что ж, есть масса веских причин разбираться в низинах температуры, и не только на правах победителя.

Хорошие ребята из Национального института стандартов и технологий, например, просто хотели бы сделать классные часы. Стандарты времени основаны на таких вещах, как частота атома цезия. Если атом цезия движется слишком много, появляется неопределенность в измерениях, что, в конечном счете, приведет к сбою часов.

Но что более важно, особенно с точки зрения науки, материалы ведут себя безумно на экстремально низких температурах. К примеру, как лазер состоит из фотонов, которые синхронизируются друг с другом — на одной частоте и фазе — так и материал, известный как конденсат Бозе-Эйнштейна, может быть создан. В нем все атомы находятся в одном и том же состоянии. Или представьте себе амальгаму, в которой каждый атом теряет свою индивидуальность, и вся масса реагирует как один нуль-супер-атом.

При очень низких температурах многие материалы становятся сверхтекучими, что означает, что они могут совершенно не обладать вязкостью, укладываться сверхтонкими слоями и даже бросать вызов гравитации в достижении минимума энергии. Также при низких температурах многие материалы становятся сверхпроводящими, что означает отсутствие какого-либо электрического сопротивления.

Сверхпроводники способны реагировать на внешние магнитные поля таким образом, чтобы полностью отменять их внутри металла. В результате, вы можете объединить холодную температуру и магнит и получить что-то типа левитации.


Почему есть абсолютный ноль, но нет абсолютного максимума?

Давайте взглянем на другую крайность. Если температура — это просто мера энергии, то можно просто представить атомы, которые подбираются ближе и ближе к скорости света. Не может же это продолжаться бесконечно?

Есть короткий ответ: мы не знаем. Вполне возможно, что буквально существует такая вещь, как бесконечная температура, но если есть абсолютный предел, юная вселенная предоставляет достаточно интересные подсказки относительно того, что это такое. Самая высокая температура, когда-либо существовавшая (как минимум в нашей вселенной), вероятно, случилась в так называемое «время Планка».

Это был миг длиной в 10^-43 секунд после Большого Взрыва, когда гравитация отделилась от квантовой механики и физика стала именно такой, какой является сейчас. Температура в то время была примерно 10^32 K. Это в септиллион раз горячее, чем нутро нашего Солнца.

Опять же, мы совсем не уверены, самая ли это горячая температура из всех, что могли быть. Поскольку у нас даже нет большой модели вселенной в момент времени Планка, мы даже не уверены, что Вселенная кипятилась до такого состояния. В любом случае, к абсолютному нулю мы во много раз ближе, чем к абсолютной жаре.

Любое физическое тело, включая все объекты во Вселенной, имеет минимальный показатель температуры или ее предел. За точку отсчета любой температурной шкалы и принято считать значение абсолютного нуля температур. Но это только в теории. Хаотичное движение атомов и молекул, которые отдают в это время свою энергию, остановить пока на практике не удалось.

Это и есть основная причина, почему нельзя достичь абсолютного нуля температур. До сих пор ведутся споры и о последствиях этого процесса. С точки зрения термодинамики этот предел недостижим, так как тепловое движение атомов и молекул прекращается полностью, образуется кристаллическая решетка.

Представители квантовой физики предусматривают наличие при абсолютном нуле температур минимальных нулевых колебаний.

Какое значение абсолютного нуля температур и почему его нельзя достичь

На генеральной конференции по мерам и весам была установлена впервые реперная или точка отсчета для измерительных приборов, определяющих показатели температуры.

В настоящее время в Международной системе единиц реперная точка для шкалы Цельсия составляет 0°C при замерзании и 100°C в процессе кипения, значение абсолютного нуля температур приравнивается к −273,15°C.

Используя температурные значения по шкале Кельвина по той же Международный системе измерения единиц, кипение воды будет происходить при реперном значении 99,975°C, абсолютный нуль приравнивается к 0. По Фаренгейту на шкале соответствует показателю -459,67 градусов.

Но, если эти данные получены, почему тогда нельзя на практике достичь абсолютного нуля температур. Для сравнения можно взять известную всем скорость света, которая равна постоянному физическому значению 1 079 252 848,8 км/ч.

Однако эту величину достичь не удается на практике. Она зависит и от длины волны передачи, и от условий, и от необходимого поглощения большого количества энергии частицами. Чтобы получить значение абсолютного нуля температур, необходима большая отдача энергии и отсутствие ее источников для предотвращения попадания ее в атомы и молекулы.

Но даже в условиях полного вакуума ни скорости света, ни абсолютного нуля температур ученым получить так и не удалось.

Почему можно достичь приблизительного нуля температур, но нельзя абсолютного

Что же будет происходить, когда наука сможет вплотную приблизиться к достижению предельно низкого показателя температуры абсолютного нуля, пока остается только в теории термодинамики и квантовой физики. В чем причина, почему нельзя достичь абсолютного нуля температур на практике.

Все известные попытки охладить вещество до самой низкой предельной границы за счет максимальной потери энергии приводили к тому, что значение теплоемкости вещества так же достигало минимального значения. Отдавать оставшуюся часть энергии молекулы уже были просто не в состоянии. В результате процесс охлаждения прекращался, так и не достигнув абсолютного нуля.

При изучении поведения металлов в условиях, приближенных к значению абсолютного нуля температур, ученые установили, что максимальное понижение температуры должно спровоцировать потерю сопротивления.

Но прекращение движения атомов и молекул привело только к образованию кристаллической решетки, через которую проходящие электроны передавали часть своей энергии неподвижным атомам. Достичь абсолютного нуля опять не удалось.

В 2003 году до температуры абсолютного нуля не хватило всего лишь половины миллиардной доли 1°C. Исследователи «NASA» использовали для проведения опытов молекулу Na, которая все время находилась в магнитном поле и отдавала свою энергию.

Ближе всех стало достижение ученых Йельского университета, которое в 2014 году добилась показателя в 0,0025 Кельвинов. Полученное соединение монофторид стронция (SrF) существовало всего лишь 2,5 секунды. И в итоге все равно распалось на атомы.

Абсолютный нуль температуры

Абсолю́тный нуль температу́ры (реже - абсолютный ноль температуры ) - минимальный предел температуры , которую может иметь физическое тело во Вселенной. Абсолютный нуль служит началом отсчёта абсолютной температурной шкалы, например, шкалы Кельвина . В 1954 X Генеральная конференция по мерам и весам установила термодинамическую температурную шкалу с одной реперной точкой - тройной точкой воды, температура которой принята 273,16 К (точно), что соответствует 0,01 °C, так что по шкале Цельсия абсолютному нулю соответствует температура −273,15 °C .

Явления, наблюдаемые вблизи абсолютного нуля

При температурах, близких к абсолютному нулю, на макроскопическом уровне могут наблюдаться чисто квантовые эффекты, такие как:

Примечания

Литература

  • Г. Бурмин. Штурм абсолютного нуля. - М.: «Детская литература», 1983

См. также


Wikimedia Foundation . 2010 .

  • Геринг
  • Кшапанака

Смотреть что такое "Абсолютный нуль температуры" в других словарях:

    АБСОЛЮТНЫЙ НУЛЬ ТЕМПЕРАТУРЫ - начало отсчёта термодинамич. темп ры; расположен на 273,16 К ниже темп ры тройной точки (0,01°С) воды (на 273, 15°С ниже нуля темп ры по шкале Цельсия, (см. ТЕМПЕРАТУРНЫЕ ШКАЛЫ). Существование термодинамической температурной шкалы и А. н. т.… … Физическая энциклопедия

    абсолютный нуль температуры - начало отсчёта абсолютной температуры по термодинамической температурной шкале. Абсолютный нуль расположен на 273,16ºC ниже температуры тройной точки воды, для которой принято значение 0,01ºC. Абсолютный нуль температуры принципиально недостижим… … Энциклопедический словарь

    абсолютный нуль температуры - absoliutusis nulis statusas T sritis Energetika apibrėžtis Termodinaminės temperatūros atskaitos pradžia, esanti 273,16 K žemiau trigubojo vandens taško. Pagal trečiąjį termodinamikos dėsnį, absoliutusis nulis nepasiekiamas. atitikmenys: angl.… … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

    Абсолютный нуль температуры - начальный отсчет по шкале Кельвина, составляет по шкале Цельсия отрицательную температуру в 273,16 градуса … Начала современного естествознания

    АБСОЛЮТНЫЙ НУЛЬ - температуры, начало отсчета температуры по термодинамической температурной шкале. Абсолютный нуль расположен на 273,16шC ниже температуры тройной точки воды (0,01шC). Абсолютный нуль принципиально недостижим, практически достигнуты температуры,… … Современная энциклопедия

    АБСОЛЮТНЫЙ НУЛЬ - температуры начало отсчета температуры по термодинамической температурной шкале. Абсолютный нуль расположен на 273,16 .С ниже температуры тройной точки воды, для которой принято значение 0,01 .С. Абсолютный нуль принципиально недостижим (см.… … Большой Энциклопедический словарь

    АБСОЛЮТНЫЙ НУЛЬ - температура, выражающая отсутствие теплоты, равна 218° Ц. Словарь иностранных слов, вошедших в состав русского языка. Павленков Ф., 1907. абсолютный нуль температуры (физ.) – наиболее низкая возможная температура (273,15°C). Большой словарь… … Словарь иностранных слов русского языка

    АБСОЛЮТНЫЙ НУЛЬ - температуры, начало отсчета температуры по термодинамической температурной шкале (см. ТЕРМОДИНАМИЧЕСКАЯ ТЕМПЕРАТУРНАЯ ШКАЛА). Абсолютный нуль расположен на 273,16 °С ниже температуры тройной точки (см. ТРОЙНАЯ ТОЧКА) воды, для которой принято… … Энциклопедический словарь

    АБСОЛЮТНЫЙ НУЛЬ - предельно низкая температура, при которой прекращается тепловое движение молекул. Давление и объем идеального газа, согласно закону Бойля Мариотта, становится равным нулю, а за начало отсчета абсолютной температуры по шкале Кельвина принимается… … Экологический словарь

    АБСОЛЮТНЫЙ НУЛЬ - начало отсчета абсолютной температуры. Соответствует 273,16° С. В настоящее время в физических лабораториях удалось получить температуру, превышающую абсолютный нуль всего на несколько миллионных долей градуса, достичь же его, согласно законам… … Энциклопедия Кольера