Термодинамические системы примеры. Термодинамическая система

Cтраница 1


Термодинамическая система, как и любая другая физическая система, обладает некоторым запасом энергии, который обычно называют внутренней энергией системы.  

Термодинамическая система называется изолированной, если она не может обмениваться с внешней средой ни энергией, ни веществом. Примером такой системы может служить газ, заключенный в сосуд постоянного объема. Термодинамическая система называется адиабатной, если она не может обмениваться с другими системами энергией путем теплообмена.  

Термодинамическая система - это совокупность тел, которые в той или иной степени могут обмениваться между собой и окружающей средой энергией и веществом.  

Термодинамические системы подразделяются на закрытые, не обменивающиеся веществом с другими системами, и открытые, обменивающиеся веществом и энергией с другими системами. В тех случаях, когда система не обменивается энергией и веществом с другими системами, она называется изолированной, а когда не происходит теплообмена, система называется адиабатной.  

Термодинамические системы могут состоять из смесей чистых веществ. Смесь (раствор) называется гомогенной, когда химический состав и физические свойства в любых малых частицах одинаковы или изменяются непрерывно от одной точки системы к другой. Плотность, давление и температура гомогенной смеси в любой точке идентичны. Примером гомогенной системы может служить некоторый объем воды, химический состав которой одинаков, а физические свойства меняются от одной точки к другой.  

Термодинамическая система с определенным количественным соотношением компонентов называется единичной физико-химической системой.  

Термодинамические системы (макроскопические тела) наряду с механической энергией Е обладают еще и внутренней энергией U, зависящей от температуры, объема, давления и других термодинамических параметров.  

Термодинамическая система называется неизолированной, или незамкнутой, если она может получать или отдавать тепло в окружающую среду и производить работу, а внешняя среда - совершать работу над системой. Система является изолированной, или замкнутой, если она не имеет обмена теплом с окружающей средой, а изменение давления внутри системы не влияет на окружающую среду и последняя не может произвести работу над системой.  

Термодинамические системы состоят из статистически большого числа частиц.  

Термодинамическая система при определенных внешних условиях (или изолированная система) приходит в состояние, которое характеризуется постоянством ее параметров во времени и отсутствием в системе потоков вещества и теплоты. Такое состояние системы называется равновесным или состоянием равновесия. Самопроизвольно из этого состояния система выйти не может. Состояние системы, в которой отсутствует равновесие, называется неравновесным. Процесс постепенного перехода системы из неравновесного состояния, вызванного внешними воздействиями, в состояние равновесия называется релаксацией, а промежуток времени возвращения системы в равновесное состояние - временем релаксации.  

Термодинамическая система в этом случае совершает работу расширения за счет уменьшения внутренней энергии системы.  


Термодинамическая система является объектом изучения в термодинамике и представляет собой совокупность тел, энергетически взаимодействующих между собой и окружающей средой и обменивающихся с ней веществом.  

Термодинамическая система, предоставленная самой себе при неизменных внешних условиях, приходит в состояние равновесия, характеризуемое постоянством всех параметров и отсутствием макроскопических движений. Такое состояние системы называется состоянием термодинамического равновесия.  

Термодинамическая система характеризуется конечным числом независимых переменных - макроскопических величин, называемых термодинамическими параметрами. Одним из независимых макроскопических параметров термодинамической системы, отличающим ее от механической, является температура как мера интенсивности теплового движения. Температура тела может изменяться вследствие теплообмена с окружающей средой и действия источников тепла и в результате самого процесса деформирования. Связь деформации с температурой устанавливается с помощью термодинамики.  

Термодинамика – это наука, изучающая общие закономерности протекания процессов, сопровождающихся выделением, поглощением и превращением энергии. Химическая термодинамика изучает взаимные превращения химической энергии и других ее форм – тепловой, световой, электрической и т.д., устанавливает количественные законы этих переходов, а также позволяет предсказать устойчивость веществ при заданных условиях и их способность вступать в те или иные химические реакции. Объект термодинамического рассмотрения называют термодинамической системой или просто системой.

Система – любой объект природы, состоящий из большого числа молекул (структурных единиц) и отделённый от других объектов природы реальной или воображаемой граничной поверхностью (границей раздела).

Состояние системы – совокупность свойств системы, позволяющих определить систему с точки зрения термодинамики.

Типы термодинамических систем :

I. По характеру обмена веществом и энергией с окружающей средой :

1. Изолированная система – не обменивается со средой ни веществом, ни энергией (Δm = 0; ΔE = 0) - термос.

2. Закрытая система – не обменивается со средой веществом, но может обмениваться энергией (закрытая колба с реагентами).

3. Открытая система – может обмениваться со средой, как веществом, так и энергией (человеческое тело).

II. По агрегатному состоянию :

1. Гомогенная – отсутствие резких изменений физических и химических свойств при переходе от одних областей системы к другим (состоят из одной фазы).

2. Гетерогенная – две или более гомогенные системы в одной (состоит из двух или нескольких фаз).

Фаза – это часть системы, однородная во всех точках по составу и свойствам и отделенная от других частей системы поверхностью раздела. Примером гомогенной системы может служить водный раствор. Но если раствор насыщен и на дне сосуда есть кристаллы солей, то рассматриваемая система – гетерогенна (есть граница раздела фаз). Другим примером гомогенной системы может служить простая вода, но вода с плавающим в ней льдом – система гетерогенная.

Фазовый переход - превращения фаз (таяние льда, кипение воды).

Термодинамический процесс - переход термодинамической системы из одного состояния в другое, который всегда связан с нарушением равновесия системы.

Классификация термодинамических процессов :

7. Изотермический - постоянная температура – T = const

8. Изобарный - постоянное давление – p = const

9. Изохорный - постоянный объем – V = const

Стандартное состояние - это состояние системы, условно выбранное в качестве стандарта для сравнения.

Для газовой фазы - это состояние химически чистого вещества в газовой фазе под стандартным давлением 100 кПа (до 1982 года - 1 стандартная атмосфера, 101 325 Па, 760 мм ртутного столба), подразумевая наличие свойств идеального газа.

Для беспримесной фазы , смеси или растворителя в жидком или твёрдом агрегатном состоянии - это состояние химически чистого вещества в жидкой или твёрдой фазе под стандартным давлением.

Для раствора - это состояние растворённого вещества со стандартной моляльностью 1 моль/кг, под стандартным давлением или стандартной концентрации, исходя из условий, что раствор неограниченно разбавлен.

Для химически чистого вещества - это вещество в чётко определённом агрегатном состоянии под чётко определённым, но произвольным, стандартным давлением.

В определение стандартного состояния не входит стандартная температура , хотя часто говорят о стандартной температуре, которая равна 25°C (298,15 К).

2.2. Основные понятия термодинамики: внутренняя энергия, работа, теплота

Внутренняя энергия U - общий запас энергии, включая движение молекул, колебания связей, движение электронов, ядер и др., т.е. все виды энергии кроме кинетической и потенциальной энергии системы в целом.

Нельзя определить величину внутренней энергии какой-либо системы, но можно определить изменение внутренней энергии ΔU, происходящее в том или ином процессе при переходе системы из одного состояния (с энергией U 1) в другое (с энергией U 2):

ΔU зависит от вида и количества рассматриваемого вещества и условий его существования.

Суммарная внутренняя энергия продуктов реакции отличается от суммарной внутренней энергии исходных веществ, т.к. в ходе реакции происходит перестройка электронных оболочек атомов взаимодействующих молекул.

Термодинамической системой называется всякая физическая система, состоящая из большого числа частиц - атомов и молекул, которые совершают бесконечное тепловое движение и, взаимодействуя между собой, обмениваются энергиями. Такими термодинамическими системами, и притом простейшими, являются газы, молекулы которых совершают беспорядочное поступательное и вращательное движения и при столкновениях обмениваются кинетическими энергиями. Термодинамическими системами являются также твердые

и жидкие вещества. Молекулы твердых тел совершают беспорядочные колебания вокруг своих положений равновесия; обмен энергиями между молекулами происходит благодаря их непрерывному взаимодействию, вследствие чего смещение одной молекулы от своего положения равновесия немедленно отражается на расположении и скорости движения средних молекул. Так как средняя энергия теплового движения молекул, согласно формулам (1.7) и (1.8), связана с температурой, то температура является важнейшей физической величиной, характеризующей различные состояния термодинамических систем. Кроме температуры состояния таких систем определяются также и объемом, который они занимают, и внешним давлением или внешними силами, действующими на систему.

Важным свойством термодинамических систем является существование у них равновесиях состояний, в которых они могут пребывать сколь угодно долго. Если на термодинамическую систему, находящуюся в одном из равновесных состояний, оказать некоторое внешнее воздействие и затем прекратить его, то система самопроизвольно переходит в новое равновесное состояние. Однако следует подчеркнуть, что тенденция к переходу в равновесное состояние действует всегда и непрерывно, даже в течение того времени, когда система подвергается внешнему воздействию. Эта тенденция или, точнее, постоянное существование процессов, ведущих к достижению равновесных состояний, является важнейшей особенностью термодинамических систем.

Для газа, заключенного в некотором сосуде, равновесным является состояние, в котором температура, давление и плотность (или число молекул в единице объема) в пределах объема газа везде одинаковы. Если в каком-нибудь месте этого объема вызвать местное нагревание или сжатие, то в системе начнется процесс выравнивания температуры и давления; этот процесс будет происходить и в течение того времени, пока имеется внешнее воздействие, однако только после прекращения этого воздействия процесс выравнивания приведет систему к новому равновесному состоянию.

Состояния изолированных термодинамических систем, которые, несмотря на отсутствие внешних воздействий, не сохраняются в течение конечных промежутков времени, называются неравновесными. Система, первоначально находящаяся в неравновесном состоянии, с течением времени переходит в равновесное состояние. Время перехода из неравновесного состояния в равновесное называется временем релаксации. Обратный переход из равновесного состояния в неравновесное может быть осуществлен при помощивнешних воздействий на систему. Неравновесным является, в частности, состояние системы с различными температурами в различных местах; выравнивание температуры в газах, твердых и жидких телах есть переход этих тел в равновесное состояние с одинаковой температурой в пределах объема тела. Другой пример неравновесного состояния можно привести, рассматривая двухфазные системы, состоящие из жидкости и ее пара. Если над поверхностью жидкости, находящейся в закрытом сосуде, имеется ненасыщенный пар, то состояние системы неравновесное: число молекул вылетающих в единицу времени из жидкости, больше, чем число

молекул возвращающихся за это же время из пара в жидкость. Вследствие этого с течением времени число молекул в парообразном состоянии увеличивается (т. е. увеличивается плотность пара) до тех пор, пока не установится равновесное состояние с

Переход от неравновесного состояния в равновесное в большинстве случаев происходит непрерывно, причем скорость этого перехода можно при помощи соответствующего внешнего воздействия плавно регулировать, сделав процесс релаксации либо очень быстрым, либо очень медленным. Так, например, путем механического перемешивания можно заметно повысить скорость выравнивания температуры в жидкостях или газах; охлаждая жидкость, можно сделать очень медленным процесс диффузии растворенного, в ней вещества, и т. п.

Для некоторых систем существуют такие состояния, называемые метастабильными, в которых эти системы могут находиться относительно долгое время, но как только на систему будет оказано внешнее воздействие определенного характера, происходит самопроизвольный скачкообразный переход к равновесному состоянию. В этих случаях внешнее воздействие лишь открывает возможность к переходу в равновесное состояние. Например, достаточно чистая вода при медленном подводе тепла может быть нагрета до температуры на несколько градусов выше температуры кипения. Это состояние воды является метастабильным; если встряхнуть такую воду (или внести небольшое число пылинок - центров образования пузырьков пара), она со взрывом закипает и ее температура скачком понижается до температуры кипения. Таким образом, метастабильное состояние характеризуется тем, что при выводе из этого состояния система не только не возвращается к ней, но, наоборот, еще более отходит от нее, скачком переходя в существующее для этой системы равновесное состояние.

Введение . Предмет теплотехники. Основные понятия и определения. Термодинамическая система. Параметры состояния. Температура. Давление. Удельный объем. Уравнение состояния. Уравнение Ван-дер-Ваальса .

Соотношение между единицами:

1 бар = 10 5 Па

1 кг/см 2 (атмосфера) = 9.8067 10 4 Па

1мм рт. ст (миллиметр ртутного столба) = 133 Па

1 мм вод. ст. (миллиметр водного столба) = 9.8067 Па

Плотность - отношение массы вещества к объему занимаемому эти веществом .

Удельный объем - величина обратная плотности, т.е. отношения объема занятого веществом к его массе .

Определение: Если в термодинамической системе меняется хотя бы один из параметров любого входящего в систему тела, то в системе происходит термодинамический процесс .

Основные термодинамические параметры состояния Р, V, Т однородного тела зависят один от другого и взаимно связаны уравнением состояния:

F (P, V, Т )

Для идеального газа уравнение состояния записывается в виде:

P - давление

v - удельный объем

T - температура

R - газовая постоянная (у каждого газа свое значение)

Если известно уравнение состояния, то для определения состояния простейших систем достаточно знать две независимые переменные из 3-х

Р = f1 (v, т); v = f2 (Р, Т); Т = f3 (v, Р).

Термодинамические процессы часто изображаются на графиках состояния, где по осям отложены параметры состояния. Точки, на плоскости такого графика, соответствуют определенному состоянию системы, линии на графике соответствуют термодинамическим процессам, переводящим систему из одного состояния в другое.

Рассмотрим термодинамическую систему, состоящую из одного тела какого-либо газа в сосуде с поршнем, причем сосуд и поршень в данном случае является внешней средой.

Пусть, для примера, происходит нагрев газа в сосуде, возможны два случая :

1) Если поршень зафиксирован, и объем не меняется, то произойдет повышение давления в сосуде. Такой процесс называется изохорным (v = const), идущий при постоянном объеме;

Рис. 1.1. Изохорные процессы в P - T координатах: v 1 >v 2 >v 3

2) Если поршень свободен, то нагреваемый газ будет расширяться, при постоянном давлении такой процесс называется изобарическим (P = const), идущим при постоянном давлении.

Рис. 1.2 Изобарные процессы в v - T координатах: P 1 >P 2 >P 3

Если, перемещая поршень, изменять объем газа в сосуде то, температура газа тоже будет изменяться, однако можно охлаждая сосуд при сжатии газа и нагревая при расширении можно достичь того, что температура будет постоянной при изменениях объема и давления, такой процесс называется изотермическим (Т = const).

Рис. 1.3 Изотермические процессы в P - v координатах: Т 1 >T 2 >T 3

Процесс, при котором отсутствует теплообмен между системой и окружающей средой, называется адиабатным , при этом количество теплоты в системе остается постоянными (Q = const). В реальной жизни адиабатных процессов не существует поскольку полностью изолировать систему от окружающей среды не возможно. Однако, часто происходят процессы, при которых теплообменном с окружающей средой очень мал, например, быстрое сжатие газа в сосуде поршнем, когда тепло не успевает отводиться за счет нагрева поршня и сосуда.

Рис. 1.4 Примерный график адиабатного процесса в P - v координатах.

Определение: Круговой процесс (Цикл) - это совокупность процессов, возвращающих систему в первоначальное состояние . Число отдельных процессов может быть любым в цикле.

Понятие кругового процесса является для нас ключевым в термодинамике, поскольку работа АЭС основана на пароводяном цикле, другими словами мы можем рассматривать испарение воды а активной зоне (АЗ), вращение паром ротора турбины, конденсацию пара и поступление воды в АЗ как некий замкнутый термодинамический процесс или цикл.

Определение: Рабочие тело - определенное количество вещества, которое, участвуя в термодинамическом цикле, совершает полезную работу . Рабочим телом в реакторной установке РБМК является вода, которая после испарения в активной зоне в виде пара совершает работу в турбине, вращая ротор.

Определение: Передача энергии в термодинамическом процессе от одного тела к другому, связанная с изменением объема рабочего тела, с перемещением его во внешнем пространстве или с изменением его положения называется работой процесса .

Термодинамическая система

Техническая термодинамика (т/д) рассматривает закономерности взаимного превращения теплоты в работу. Она устанавливает взаимосвязь между тепловыми, механическими и химическими процессами, которые совершаются в тепловых и холодильных машинах, изучает процессы, происходящие в газах и парах, а также свойства этих тел при различных физических условиях.

Термодинамика базируется на двух основных законах (началах) термодинамики:

I закон термодинамики - закон превращения и сохранения энергии;

II закон термодинамики - устанавливает условия протекания и направленность макроскопических процессов в системах, состоящих из большого количества частиц.

Техническая т/д, применяя основные законы к процессам превращения теплоты в механическую работу и обратно, дает возможность разрабатывать теории тепловых двигателей, исследовать процессы, протекающие в них и т.п.

Объектом исследования является термодинамическая система, которой могут быть группа тел, тело или часть тела. То что находится вне системы называется окружающей средой . Т/д система это совокупность макроскопических тел, обменивающиеся энергией друг с другом и окружающей средой. Например: т/д система - газ, находящейся в цилиндре с поршнем, а окружающая среда - цилиндр, поршень, воздух, стены помещения.

Изолированная система - т/д система не взаимодействующая с окружающей средой.

Адиабатная (теплоизолированная) система - система имеет адиабатную оболочку, которая исключает обмен теплотой (теплообмен) с окружающей средой.

Однородная система - система, имеющая во всех своих частях одинаковый состав и физические свойства.

Гомогенная система - однородная система по составу и физическому строению, внутри которой нет поверхностей раздела (лед, вода, газы).

Гетерогенная система - система, состоящая из нескольких гомогенных частей (фаз) с различными физическими свойствами, отделенных одна от другой видимыми поверхностями раздела (лед и вода, вода и пар).
В тепловых машинах (двигателях) механическая работа совершается с помощью рабочих тел - газ, пар.

Свойства каждой системы характе-ризуются рядом величин, которые при-нято называть термодинамиче-скими параметрами. Рассмот-рим некоторые из них, используя при этом известные из курса физики молекулярно-кинетические представления об идеальном газе как о совокупности моле-кул, которые имеют исчезающе малые размеры, находятся в беспорядочном тепловом движении и взаимодействуют друг с другом лишь при соударениях.

Давление обусловлено взаимо-действием молекул рабочего тела с по-верхностью и численно равно силе, дей-ствующей на единицу площади повер-хности тела по нормали к последней. В соответствии с молекулярно-кинетической теорией давление газа определяется соотношением

Где n — число молекул в единице объема;

т — масса молекулы; с 2 — средняя квадратическая скорость поступательного движения молекул.

В Международной системе единиц (СИ) давление выражается в паскалях (1 Па = 1 Н/м 2). Поскольку эта единица мала, удобнее использовать 1 кПа = 1000 Па и 1 МПа = 10 6 Па.

Давление измеряется при помощи манометров, барометров и вакуумметров.

Жидкостные и пружинные манометры измеряют избыточное давление, пред-ставляющее собой разность между полным или абсолютным давлением р изме-ряемой среды и атмосферным давлением

p атм, т.е.

Приборы для измерения давлений ниже атмосферного называются вакуум-метрами; их показания дают значение разрежения (или вакуума):

т. е. избыток атмосферного давления над абсолютным.

Следует отметить, что параметром состояния является абсолютное давление. Именно оно входит в термодинамические уравнения.

Температурой называется физическая величина , характеризующая степень нагретости тела. Понятие о температуре вытекает из следующего утвер-ждения: если две системы находятся в тепловом контакте, то в случае неравенства их температур они будут обмениваться теплотой друг с другом, если же их температуры равны, то теплообмена не будет.

С точки зрения молекулярно-кинетических представлений температура есть мера интенсивности теплового движения молекул. Е е численное значение связано с величиной средней кинетической энергии молекул вещества:

где k — постоянная Больцмана, равная 1,380662.10? 23 Дж/К. Температура T, определенная таким образом, называется абсолютной .

В системе СИ единицей температуры является кельвин (К); на практике широко применяется градус Цельсия (°С). Соотношение между абсолютной Т и стоградусной I температурами имеет вид

В промышленных и лабораторных условиях температуру измеряют с помощью жидкостных термометров, пирометров, термопар и других приборов.

Удельный объем v это объем единицы массы вещества. Если однородное тело массой М занимает объем v, то по определению

v = V/М.

В системе СИ единица удельного объема 1 м 3 /кг. Между удельным объемом вещества и его плотность существует очевидное соотношение:

Для сравнения величин, характеризующих системы в одинаковых состояниях вводится понятие «нормальные физические условия»:

p = 760 мм рт.ст. = 101,325 кПа; T = 273,15 K.

В разных отраслях техники и разных странах вводят свои, несколько отличные от приведенных «нормальные условия», например, «технические» (p = 735,6 мм рт.ст. = 98 кПа, t = 15?C) или нормальные условия для оценки производительности компрессоров (p = 101,325 кПа, t = 20?С) и т. д.

Если все термодинамические параметры постоянны во времени и одинаковы во всех точках системы, то такое состояние системы называется равно-весным .

Если между различными точками в системе существуют разности темпера-тур, давлений и других параметров, то она является неравновесной . В такой системе под действием градиентов параметров возникают потоки теплоты, вещества и другие, стремящиеся вернуть ее в состояние равновесия. Опыт показывает, что изолированная система с течением времени всегда приходит в со-стояние равновесия и никогда самопроизвольно выйти из него не может. В классической термодинамике рассматриваются только равновесные системы.

Уравнение состояния. Для равновесной термодинамической системы существует функциональная связь между параметрами состояния, которая называется уравнением состояния . Опыт показывает, что удельный объем, температура и давление простейших систем, которыми являются газы, пары или жидкости, связаны термическим уравнением состояние вида:

Уравнению состояния можно придать другую форму:

Эти уравнения показывают, что из трех основных параметров, определяющих состояние системы, независимыми являются два любых.

Для решения задач методами термодинамики совершенно необходимо знать уравнение состояния. Однако оно не может быть получено в рамках термодинамики и должно быть найдено либо экспериментально, либо методами статистической физики. Конкретный вид уравнения состояния зависит от индивидуальных свойств вещества.

Термодинамика - наука, которая изучает тепловые явления, происходящие в телах, не связывая их с молекулярным строением вещества.

В термодинамике считается, что все тепловые процессы в телах характеризуются только лишь макроскопическими параметрами - давлением, объёмом и температурой. А так как их невозможно применить к отдельно взятым молекулам или атомам, то, в отличие от молекулярно-кинетической теории, в термодинамике молекулярное строение вещества в тепловых процессах не учитывается.

Все понятия термодинамики сформулированы как обобщение фактов, наблюдаемых в ходе экспериментов. Из-за этого её называют феноменологической (описательной) теорией тепла.

Термодинамические системы

Термодинамика описывает тепловые процессы, происходящие в макроскопических системах. Такие системы состоят из огромного количества частиц - молекул и атомов, и называются термодинамическими.

Термодинамической системой можно считать любой объект, который можно увидеть невооружённым глазом или с помощью микроскопов, телескопов и других оптических приборов. Главное, чтобы размеры системы в пространстве и время её существования позволяли провести измерения её параметров - температуры, давления, массы, химического состава элементов и др., с помощью приборов, не реагирующих на воздействие отдельных молекул (манометров, термометров и др.).

Для химиков термодинамическкой системой является смесь химических веществ, взаимодействующих между собой в процессе химической реакции. Астрофизики назовут такой системой небесное тело. Смесь горючего с воздухом в автомобильном двигателе, земной шар, наше тело, пишущая ручка, тетрадь, станок и др. - это также термодинамические системы.

Каждая термодинамическая система отделена от окружающей среды границами. Они могут быть реальными - стеклянные стенки пробирки с химическим веществом, корпус цилиндра в двигателе и т.п. А могут быть и условными, когда, например, изучают образование облака в атмосфере.

Если такая система не обменивается с внешней средой ни энергией, ни веществом, то её называют изолированной или замкнутой .

Если же система обменивается с внешней средой энергией, но не обменивается веществом, то она называется закрытой .

Открытая система обменивается с внешней средой и энергией, и веществом.

Термодинамическое равновесие

Это понятие также введено в термодинамику, как обобщение результатов экспериментов.

Термодинамическим равновесием называют такое состояние системы, при котором все её макроскопические величины - температура, давление, объём и энтропия - не изменяются во времени, если система является изолированной. В такое состояние может самопроизвольно перейти любая замкнутая термодинамическая система, если остаются постоянными все внешние параметры.

Самый простой пример системы в состоянии термодинамического равновесия - термос с горячим чаем. Температура в нём одинакова в любой точке жидкости. Хотя термос можно назвать изолированной системой лишь приблизительно.

Любая замкнутая термодинамическая система самопроизвольно стремится перейти в термодинамическое равновесие, если не меняются внешние параметры.

Термодинамический процесс

Если меняется хотя бы один из макроскопических параметров, то говорят, что в системе происходит термодинамический процесс . Такой процесс может возникнуть, если изменяются внешние параметры или система начинает получать или передавать энергию. В результате она переходит в другое состояние.

Вспомним пример с чаем в термосе. Если мы опустим в чай кусочек льда и закроем термос, то сразу же появится разница в температурах в разных частях жидкости. Жидкость в термосе будет стремиться к выравниванию температур. Из областей с более высокой температурой тепло будет передаваться туда, где температура ниже. То есть, будет происходить термодинамический процесс. В конце концов, температура чая в термосе снова станет одинаковой. Но она уже будет отличаться от первоначальной температуры. Состояние системы изменилось, так как изменилась её температура.

Термодинамический процесс происходит, когда ночью остывает песок, нагретый на пляже в жаркий день. К утру его температура понижается. Но как только взойдёт солнце, процесс нагревания начнётся снова.

Внутренняя энергия

Одно из главных понятий термодинамики - внутренняя энергия .

Все макроскопические тела обладают внутренней энергией, которая является суммой кинетических и потенциальных энергий всех частиц (атомов и молекул), из которых состоит тело. Эти частицы взаимодействуют только между собой и не взаимодействуют с частицами окружающей среды. Внутренняя энергия зависит от кинетической и потенциальной энергии частиц и не зависит от положения самого тела.

U = E k +E p

Внутренняя энергия изменяется с изменением температуры. Молекулярно-кинетическая теория объясняет это изменением скорости движения частиц вещества. Если температура тела растёт, то растёт и скорость движения частиц, расстояние между ними становится больше. Следовательно, увеличивается их кинетическая и потенциальная энергия. При понижении температуры происходит обратный процесс.

Для термодинамики важнее не величина внутренней энергии, а её изменение. А изменить внутреннюю энергию можно с помощью процесса теплопередачи или совершая механическую работу.

Изменение внутренней энергии механической работой

Бенджамин Румфорд

Внутреннюю энергию тела можно изменить, совершив над ней механическую работу. Если работа совершается над телом, то механическая энергия превращается во внутреннюю энергию. А если работу совершает тело, то его внутренняя энергия превращается в механическую.

Почти до конца XIX века считалось, что существует невесомое вещество - теплород, которое передаёт тепло от тела к телу. Чем больше теплорода втекает в тело, тем теплее оно будет, и наоборот.

Однако в 1798 г. англо-американский учёный граф Бенджамин Румфорд стал сомневаться в теории теплорода. Причиной тому были нагревания стволов пушек при сверлении. Он предположил, что причиной нагревания является механическая работа, которая совершается во время трения сверла о ствол.

И Румфорд провёл эксперимент. Чтобы увеличить силу трение, взяли тупое сверло, а сам ствол поместили в бочку с водой. К концу третьего часа сверления вода в бочке закипела. Это означало, что ствол получил тепло при совершении механической работы над ним.

Теплопередача

Теплопередачей называют физический процесс передачи тепловой энергии (теплоты) от одного тела к другому либо при непосредственном контакте, либо через разделяющую перегородку. Как правило, теплота передаётся от более тёплого тела к более холодному. Это процесс заканчивается, когда система приходит в состояние термодинамического равновесия.

Энергия, которую получает или отдаёт тело при теплопередаче, называется количеством теплоты .

По способу передачи теплоты теплообмен можно разделить на 3 вида: теплопроводность, конвенция, тепловое излучение.

Теплопроводность

Если между телами или частями тел существует температурная разница, то между ними будет происходить процесс теплопередачи. Теплопроводностью называют процесс переноса внутренней энергии от более нагретого тела (или его части) к менее нагретому телу (или его части).

К примеру, нагрев на огне один конец стального прута, через некоторое время мы почувствуем, что и другой его конец также становится тёплым.

Стеклянную палочку, один конец которой раскалён, мы легко держим за другой конец, не обжигаясь. Но если мы попробуем проделать такой же эксперимент с железным прутом, у нас ничего не получится.

Разные вещества по-разному проводят тепло. Каждое из них имеет свой коэффициент теплопроводности , или удельной проводимости , численно равный количеству теплоты, которая проходит через образец толщиной 1 м, площадью 1 м 2 за 1 секунду. За единицу температуры принимают 1 К.

Лучше всего проводят тепло металлы. Это их свойство мы используем в быту, готовя пищу в металлических кастрюлях или на сковородках. А вот их ручки не должны нагреваться. Поэтому их делают из материалов с плохой теплопроводностью.

Теплопроводность жидкостей меньше. А газы обладают слабой теплопроводностью.

Мех животных также плохо проводит тепло. Благодаря этому они не перегреваются в жаркую погоду и не замерзают в холодную.

Конвенция

При конвенции теплота передаётся струями и потоками газа или жидкости. В твёрдых телах конвенции нет.

Как возникает конвенция в жидкости? Когда мы ставим на огонь чайник с водой, нижний слой жидкости нагревается, его плотность уменьшается, он движется вверх. Его место занимает более холодный слой воды. Через какое-то время он тоже нагреется и тоже поменяется местами с более холодным слоем. И т.д.

Подобный процесс происходит и в газах. Не случайно батареи отопления размещают в нижней части комнаты. Ведь нагретый воздух всегда поднимается в верхнюю часть комнаты. А нижний, холодный, наоборот, опускается. Затем он нагревается также и вновь поднимается, а верхний слой за это время остывает и опускается.

Конвенция бывает естественная и принудительная.

Естественная конвенция постоянно происходит в атмосфере. В результате этого происходят постоянные перемещения тёплых воздушных масс вверх, а холодных - вниз. В результате возникает ветер, облака и другие природные явления.

Когда естественной конвенции недостаточно, применяю принудительную конвенцию. Например, потоки тёплого воздуха перемещают в комнате с помощью лопастей вентилятора.

Тепловое излучение

Солнце нагревает Землю. При этом не происходит ни теплопередачи, ни конвенции. Так почему же тела получают тепло?

Дело в том, что Солнце является источником теплового излучения.

Тепловое излучение - это электромагнитное излучение, возникающее за счёт внутренней энергии тела. Все окружающие нас тела излучают тепловую энергию. Это может быть видимое световое излучение настольной лампы, или источники невидимых ультрафиолетовых, инфракрасных или гамма-лучей.

Но тела не только излучают тепло. Они его также и поглощают. Одни в большей степени, другие в меньшей. Причём тёмные тела и нагреваются, и охлаждаются быстрее, чем светлые. В жаркую погоду мы стараемся надеть светлую одежду, потому что она поглощает меньше тепла, чем одежда тёмных тонов. Автомобиль тёмного цвета нагревается на солнце гораздо быстрее, чем стоящий с ним рядом автомобиль, имеющий светлую окраску.

Это свойство веществ по-разному поглощать и излучать тепло используется при создании систем ночного видения, систем самонаведения ракет на цель и др.