Главные проблемы полета на Марс (11 фото). Презентация по физике на тему "притяжение на других планетах"

До изобретения телескопа было известно лишь семь планет: Меркурий, Венера, Марс, Юпитер, Сатурн, Земля и Луна. Их количество многих устраивало. Поэтому, когда в 1610 г. вышла книга Галилея «Звездный вестник», в которой он сообщил, что с помощью своей «зрительной трубы» ему удалось обнаружить еще четыре небесных тела, «никем еще не виданные от начала мира до наших дней» (спутники Юпитера), то это вызвало сенсацию. Сторонники Галилея радовались новым открытиям, противники же объявили ученому непримиримую войну.

Уже через год в Венеции вышла книга «Размышления об астрономии, оптике и физике», в которой автор утверждал, что Галилей заблуждается и число планет должно быть обязательно семь, так как, во-первых, в Ветхом Завете упоминается семисвечник (а это означает семь планет), во-вторых, в голове имеется лишь семь отверстий, в-третьих, существует только семь металлов и, в-четвертых, «спутники не видны для простого глаза, а поэтому и не могут оказывать влияние на Землю, следовательно, они не нужны, а поэтому они не существуют».

Однако подобными аргументами нельзя было остановить развитие науки, и теперь мы точно знаем, что спутники Юпитера существуют и число планет вовсе не равно семи. Вокруг Солнца обращаются девять больших планет (Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун и Плутон, из которых лишь первые две не обладают спутниками) и свыше трех тысяч малых планет, называемых астероидами.

Спутники обращаются вокруг своих планет под действием их гравитационного поля. Сила тяжести на поверхности каждой из планет может быть найдена по формуле F T = mg, где g = GM/R 2 - ускорение свободного падения на планете. Подставляя в последнюю формулу массу M и радиус R разных планет, можно рассчитать, чему равно ускорение свободного падения g на каждой из них. Результаты этих расчетов (в виде отношения ускорения свободного падения на данной планете к ускорению свободного падения на поверхности Земли) приведены в таблице 7.

Из этой таблицы видно, что наибольшее ускорение свободного падения и, следовательно, наибольшая сила тяжести на Юпитере. Это самая большая планета Солнечной системы; ее радиус в 11 раз, а масса в 318 раз больше, чем у Земли. Слабее всего притяжение на далеком Плутоне. Эта планета меньше Луны: ее радиус всего лишь 1150 км, а масса в 500 раз меньше, чем у Земли!

Еще меньшей массой обладают малые планеты Солнечной системы. 98% этих небесных тел обращаются вокруг Солнца между орбитами Марса и Юпитера, образуя так называемый пояс астероидов. Первый и самый большой астероид - Церера был открыт в 1801 г. Его радиус около 500 км, а масса примерно 1,2*10 21 кг (т. е. в 5000 раз меньше, чем у Земли). Нетрудно подсчитать, что ускорение свободного падения на Церере примерно в 32 раза меньше, чем на Земле! Во столько же раз меньше там оказывается и вес любого тела. Поэтому космонавт, оказавшийся на Церере, смог бы поднять груз массой 1,5 т (рис. 110).

На Церере, однако, пока еще никто не был. А вот на Луне люди уже побывали. Впервые это произошло летом 1969 г., когда космический корабль «Аполлон-11» доставил на наш естественный спутник трех американских астронавтов: Н. Армстронга, Э. Олдрина и М. Коллинза. «Конечно, - рассказал потом Армстронг,- в условиях лунного притяжения хочется прыгать вверх... Наибольшая высота прыжка составляла два метра - Олдрин прыгнул до третьей ступеньки лестницы лунной кабины. Падения не имели неприятных последствий. Скорость настолько мала, что нет оснований опасаться каких-либо травм».

Ускорение свободного падения на Луне в 6 раз меньше, чем на Земле. Поэтому, прыгая вверх, человек поднимается там на высоту, в 6 раз большую, чем на Земле. Чтобы подпрыгнуть на Луне на 2 м, как это сделал Олдрин, требуется приложить такое же усилие, что и на Земле при прыжке на высоту 33 см.

Первые астронавты находились на Луне 21 ч 36 мин. 21 июля они стартовали с Луны, а 24 июля «Аполлон-11» уже приводнился в Тихом океане. Люди покинули Луну, но на ней осталось пять медалей с изображениями пяти погибших космонавтов. Это Ю. А. Гагарин, В. М. Комаров, В. Гриссом, Э. Уайт и R Чаффи.

1. Перечислите все большие планеты, входящие в состав Солнечной системы. 2. Как называется самая большая из них и самая маленькая? 3. Во сколько раз вес человека на Юпитере превышает вес того же человека на Земле? 4. Во сколько раз сила тяжести на Марсе меньше, чем на Земле? 5. Что вы знаете о Церере? 6. Почему походка астронавтов на Луне напоминала скорее прыжки, чем обычную ходьбу?

> > > Гравитация на Марсе

Какая гравитация на Марсе по сравнению с Землей: описание показателей для планет Солнечной системы с фото, влияние на организм человека, вычисление гравитации.

Земля и Марс во многом похожи. Они практически сходятся по площади поверхности, обладают полярными шапками, осевым наклоном и сезонной изменчивостью. К тому же обе показывают, что прошли сквозь климатические перемены.

Но они и отличаются. И одним из важнейших факторов выступает гравитация . Поверьте, если вы собираетесь колонизировать чужой мир, то этот момент сыграет важную роль.

Сравнение гравитации на Марсе и Земле

Мы знаем, что земные условия помогли сформироваться жизни, поэтому используем их в качестве ориентира при поиске чужой. Атмосферное давление на Марсе – 7.5 миллибар против 1000 земного. Средний показатель температуры поверхности опускается к -63°C, а у нас – 14°C. На фото отобразили строение Марса.

Если длина марсианского дня почти сходится с земным (24 часа и 37 минут), то год охватывает целых 687 дней. Марсианская гравитация на 62% ниже земного показателя, то есть 100 кг там переходят в 38 кг.

На подобное отличие влияют масса, радиус и плотность. Несмотря на схожесть в площади поверхности, Марс охватывает лишь половину земного диаметра, 15% от объема и 11% массивности. А что с силой тяжести Марса?

Вычисление гравитации Марса

Для определения марсианской гравитации исследователи использовали теорию Ньютона: гравитация выступает пропорциональной массе. Мы сталкиваемся со сферическим телом, поэтому гравитация будет обратно пропорциональная квадрату радиуса. Ниже представлена карта гравитации Марса.

Пропорции выражаются формулой g = m/r 2 , где g – поверхностная гравитация (кратная земной = 9.8 м/с²), m – масса (кратная земной = 5.976 · 10 24 кг), а r – радиус (кратный земному = 6371 км).

Марсианская масса – 6.4171 х 10 23 кг, что в 0.107 раза больше нашей. Средний радиус – 3389.5 км = 0.532 земного. Математически: 0.107/0.532² = 0.376.

Мы не знаем, что случится с человеком, если его окунуть в подобные условия на длительный срок. Но изучение воздействия микрогравитации показывает потерю мышечной массы, плотности костей, удары по органам и снижение зрения.

Прежде чем отправляться на планету, мы должны детально изучить ее гравитацию, иначе колония обречена на гибель.

Уже есть проекты, которые занимаются этим моментом. Так Марс-1 разрабатывает программы по улучшению мускулатуры. Пребывание на МКС дольше 4-6 месяц показывает потерю мышечной массы на 15%.

Но марсианская займет намного больше времени на сам полет, где корабль атакуется космическими лучами, и пребывание на планете, где также нет защитного магнитного слоя. Экипажные миссии 2030-х гг. все ближе, поэтому мы должны поставить решение этих вопросов в приоритет. Теперь вы знаете, как выглядит гравитация на Марсе.

О путешествиях к звездам люди мечтали издревле, начиная с тех времен, когда первые астрономы рассмотрели в примитивные телескопы иные планеты нашей системы и их спутники. С тех пор прошло много веков, но увы, межпланетные и тем более полеты к другим звездам невозможны и сейчас. А единственным внеземным объектом, где побывали исследователи, является Луна.

Мы знаем, что силой тяжести называется сила, с которой Земля притягивает различные тела.

Сила тяжести всегда направлена к центру планеты. Сила тяжести сообщает телу ускорение, которое называется ускорением свободного падения и численно равно 9,8м/с 2 . Это значит, что любое тело, независимо от его массы при свободном падении (без сопротивления воздуха) изменяет свою скорость за каждую секунду падения на 9,8 м/с.

Используя формулу для нахождения ускорения свободного падения

Масса планет M и их радиус R известны благодаря астрономическим наблюдениям и сложным расчетам.

а G - гравитационная постоянная (6,6742 10 -11 м 3 с -2 кг -1).

Если применить эту формулу для вычисления гравитационного ускорения на поверхности Земли (масса М = 5,9736 1024 кг, радиус R = 6,371 106 м), мы получим g=6,6742 * 10 *5,9736 / 6,371*6,371 = 9,822м/с 2

Стандартное («нормальное») значение, принятое при построении систем единиц, g = 9,80665 м/с 2 , а в технических расчётах обычно принимают g = 9,81 м/с 2 .

Стандартное значение g было определено как «среднее» в каком-то смысле ускорение свободного падения на Земле, примерно равно ускорению свободного падения на широте 45,5° на уровне моря.

Благодаря притяжению к Земле течет вода в реках. Человек, подпрыгнув, опускается на Землю, потому что Земля притягивает его. Земля притягивает к себе все тела: Луну, воду морей и океанов, дома, спутники и т. п. Благодаря силе тяжести облик нашей планеты непрерывно меняется. Сходят с гор лавины, движутся ледники, обрушиваются камнепады, выпадают дожди, текут реки с холмов на равнины.

Все живые существа на земле чувствуют ее притяжение. Растения также «чувствуют» действие и направление силы тяжести, из-за чего главный корень всегда растет вниз, к центру земли, а стебель вверх.

Земля и все остальные планеты, движущиеся вокруг Солнца, притягиваются к нему и друг к другу. Не только Земля притягивает к себе тела, но и эти тела притягивают к себе Землю. Притягивают друг друга и все тела на Земле. Например, притяжение со стороны Луны вызывает на Земле приливы и отливы воды, огромные массы которой поднимаются в океанах и морях дважды в сутки на высоту нескольких метров. Притягивают друг друга и все тела на Земле. Поэтому ВЗАИМНОЕ ПРИТЯЖЕНИЕ ВСЕХ ТЕЛ ВСЕЛЕННОЙ НАЗЫВАЕТСЯ ВСЕМИРНЫМ ТЯГОТЕНИЕМ.

Чтобы определить силу тяжести, действующую на тело любой массы, необходимо ускорение свободного падения умножить на массу этого тела.

F = g * m ,

где m-масса тела, g – ускорение свободного падения.

Из формулы видно, что значение силы тяжести увеличивается с увеличением массы тела. Так же видно, что сила тяжести зависит также от величины ускорения свободного падения. Значит, делаем вывод: для тела неизменной массы значение силы тяжести меняется с изменение ускорения свободного падения.

Используя формулу для нахождения ускорения свободного падения g=GМ/R 2

Мы можем рассчитать значения g на поверхности любой планеты. Масса планет M и их радиус R известны благодаря астрономическим наблю¬дениям и сложным расчетам. где G - гравитационная постоянная (6,6742 10 -11 м 3 с -2 кг -1).

Планеты издавна делились учеными на две группы. Первая – это планеты земного типа: Меркурий, Венера, Земля, Марс, с недавних пор – Плутон. Для них характерны относительно небольшие размеры, малое количество спутников и твердое состояние. Оставшиеся – Юпитер, Сатурн, Уран, Нептун – планеты-гиганты, состоящие из газообразного водорода и гелия. Все они движутся вокруг Солнца по эллиптическим орбитам, отклоняясь от заданной траектории, если рядом проходит планета-сосед.

Наша «первая космическая станция» - Марс. Сколько же человек будет весить на Марсе? Сделать такой расчет нетрудно. Для этого необходимо знать массу и радиус Марса.

Как известно, масса "красной планеты" в 9,31 раза меньше массы Земли, а радиус в 1,88 раза уступает радиусу земного шара. Следовательно, из-за действия первого фактора сила тяжести на поверхности Марса должна быть в 9,31 раза меньше, а из-за второго - в 3,53 раза больше, чем у нас (1,88 * 1,88 = 3,53). В конечном счете она составляет там немногим более 1/3 части земной силы тяжести (3,53: 9,31 = 0,38). Она составляет 0,38 g от земной, это примерно в два раза меньше. Это значит, что на красной планете можно скакать и прыгать гораздо выше, чем на Земле, и все тяжести весить будут также значительно меньше. Таким же образом можно определить напряжение силы тяжести на любом небесном теле.

Теперь определим, напряжение силы тяжести на Луне. Масса Луны, как мы знаем, в 81 раз меньше массы Земли. Если бы Земля обладала такой маленькой массой, то напряжение силы тяжести на ее поверхности было бы в 81 раз слабее, чем теперь. Но по закону Ньютона шар притягивает так, словно вся его масса сосредоточена в центре. Центр Земли отстоит от ее поверхности на расстоянии земного радиуса, центр Луны – на расстоянии лунного радиуса. Но лунный радиус составляет 27/100 земного, а от уменьшения расстояния в 100/27 раза сила притяжения увеличивается в (100/27) 2 раз. Значит, в конечном итоге напряжение силы тяжести на поверхности Луны составляет

100 2 / 27 2 * 81 = 1 / 6 земного

Любопытно, что если бы на Луне существовала вода, пловец чувствовал бы себя в лунном водоеме так же, как на Земле. Его вес уменьшился бы в шесть раз, но во столько же раз уменьшился бы и вес вытесняемой им воды; соотношение между ними было бы такое же, как на Земле, и пловец погружался бы в воду Луны ровно на столько же, на сколько погружается он у нас.

ускорение свободного падения на поверхности некоторых небесных тел, м/с 2

Солнце 273,1

Меркурий 3,68-3,74

Венера 8,88

Земля 9,81

Луна 1,62

Церера 0,27

Марс 3,86

Юпитер 23,95

Сатурн 10,44

Уран 8,86

Нептун 11,09

Плутон 0,61

Как видно из таблицы, почти идентичное значение ускорения свободного падения присутствует на Венере и составляет 0,906 от земной.

Теперь условимся, что на Земле космонавт-путешественник весит ровно 70кг. Тогда для других планет получим следующие значения веса (планеты расположены в порядке возрастания веса):


А вот на Солнце гравитация (притяжение) в 28 раз сильнее, чем на Земле. Человеческое тело весило бы там 20000 Н и было бы мгновенно раздавлено собственной тяжестью.

Если нам предстоит космическое путешествие по планетам Солнечной системе, то нужно быть готовым к тому, что наш вес будет меняться. Сила притяжения также оказывает различные воздействия на живых существ. Попросту говоря, когда будут открыты другие обитаемые миры, мы увидим, что их обитатели сильно отличаются друг от друга в зависимости от массы их планет. К примеру, будь Луна обитаема, то ее населяли бы очень высокие и хрупкие существа, и наоборот, на планете массой с Юпитер жители были бы очень низкие, крепкие и массивные. А иначе на слабых конечностях в таких условиях попросту не выживешь при всем желании. Сила притяжения сыграет важную роль и при будущей колонизации того же Марса.

Радиация
Самой серьезной проблемой на Марсе является отсутствие магнитного поля, защищающего от солнечной радиации. Магнитное поле Марса слабее земного примерно в 800 раз. Вместе с разреженной атмосферой это увеличивает количество достигающего его поверхности ионизирующего излучения.
Радиационный фон на орбите Марса в 2,2 раза превышает радиационный фон на Международной космической станции. Средняя доза составила примерно 220 миллирадов в день. Объем облучения, полученного в результате пребывания в таком фоне на протяжении трех лет, приближается к установленным пределам безопасности для космонавтов.

Невесомость
На Марсе гравитация (притяжение) составляет всего 38% от земной (0,38 g). Степень влияния гравитации на здоровье людей при ее изменении от невесомости до 1 g не изучена, однако ничего хорошего ученые от нее не ждут. На земной орбите предполагается провести эксперимент на мышах с целью исследования влияния марсианской силы притяжения на жизненный цикл млекопитающих, тогда вопрос будет лучше прояснен.

Метеоритная опасность
Из-за своей разреженной атмосферы Марс гораздо в большей степени, чем Земля, подвержен метеоритной угрозе. В связи с этим гости Красной планеты рискуют попасть под метеоритный дождь, по сравнению с которым инцидент в Челябинске покажется детским лепетом. Поэтому и становится особенно актуальной проблема защиты строительной техники в том числе. В том числе придется решить проблему защиты строительных вышек тур http://www.versona.org/ и другого оборудования как на этапе создания поселения, так и позже, когда начнет развиваться сфера услуг, в частности предоставление технки в аренду.


Вредная пыль

На Марсе здоровью космонавтов будут угрожать гораздо более серьезные опасности, чем обычно. Например, простая пыль на Марсе намного опаснее лунной. Ученые подозревают, что эта пыль содержит в себе очень неприятные компоненты - мышьяк и шестивалентный хром, способный при контакте вызывать серьезные ожоги кожи и глаз.

Плохая погода
Скорость ветров, которые дуют над планетой на разных высотах, пока до конца не известна. Пыльные бури скрывают от глаз землян почти всю планету, и длятся они по три месяца.

Психологические моменты
Длительность перелета на и дальнейшее пребывание в замкнутом пространстве могут стать серьезным препятствием для самых сильных и здоровых любителей Марса. Даже при самом оптимальном сценарии один только путь к Марсу будет представлять собой изнурительное пятимесячное странствие.